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FOREWORD

The papers presented here have been derived primarily from
speakers' summaries of talks presented at the Flight
Mechanics/Estimation Theory Symposium held May 14-16, 1996,
at the Goddard Space Flight Center. For completeness,
abstracts are included for those papers which were presented
but unavailable at the time of printing. Papers included in
this document are presented as received from the authors,
with little or no editing.






CONTENTS

SESSION 1

A Simplified Pattern Match Algorithm For Star Identification............

M. Lee (NASA/ GSFC)

REQEST- A Recursive QUEST Algorithm for Sequential Attitude

DeterminNation . . . . . ...t e e

I. Bar-Itzhack (NASA/ GSFC)

Optimized TRIAD Algorithm for Attitude Determination . ...............

L. Bar-Itzhack, R. Harman (NASA/ GSFC)

Variations on the Davenport Gyroscope Calibration Algorithm . .. ........

G. Welter, J. Boia (CSC)
M. Gakenheimer, E. Kimmer, D. Channell (ATSC)
L. Hallock (NASA/ GSFC)

Satellite Angular Rate Estimation from Vector Measurements . .. .........

R. Azor, I. Bar-Itzhack, R. Harman (NASA/ GSFC)

Attitude Estimation Using Modified Rodrigues Parameters . . ............

J. Crassidis (Catholic Univ. of America)
F. Markley (NASA/ GSFC)

SESSION 2

Toward the Complete Regulator . .. .......... ... .. .. . o,

D. Sonnabend (Analytical Engineering)

Investigation of Models and Estimation Techniques for GPS Attitude

Determination . . . . . ... ittt e e e

J. Garrick (NASA/ GSFC)

Page



Attitude Drift Analysis for the WIND and POLARMissions . . .. ...............
P. Crouse (NASA/ GSFC)

Solar and Heliospheric Observatory (SOHO) Flight Dynamics Simulations
Using MATLAB .. ... .. e et e
R. Headrick, J. Rowe (CSC)

Attitude Accuracy Study for the Earth Observing System (EOS) AM-1

Spacecraft . .. ... e
J. Lesikar (CSC)
J. Garrick (NASA/ GSFC)

Attitude and Trajectory Estimation Using Earth Magnetic Field Data............
J. Deutschmann, I. Bar-Itzhack (NASA/ GSFC)

Attitude Determination Improvements for GOES . ... .................... ...
J. Crassidis
F. Markley, A. Kyle (NASA/ GSFC)
K. Kull (OSC)

SESSION 3

An Evaluation of Attitude-Independent Magnetometer-Bias Determination

J. Hashmall (CSC)
J. Deutschmann (NASA/GSFC)

Accuracy Studies of a Magnetometer-Only Attitude-and-Rate-Determination
M. Challa, C. Wheeler (CSC)
Geostationary Operational Environmental Satellite (GOES) Gyro
Temperature Model ... ....... .. ... ... .

1. Rowe, C. Noonan (CSC)
J. Garrick (NASA/ GSFC)

vi



ATTDES - An Expert System for Satellite Attitude Determination and
Control, IL. . ... . 201
D. Mackison, K. Gifford (Univ. of Colorado)

Balancing Science Objectives and Operations Constraints: A Mission
Planner’sChallenge . . .. ....... .. ... ... .. . . 215
M. Weldy (ANSER)

Modular Software for Spacecraft Navigation Using the Global

Positioning System (GPS) . . ... ... ... 217
S. Truong, K. Hartman, D. Weidow, D. Berry (NASA/ GSFC)
D. Oza, A. Long, E. Joyce, W. Steger (CSC)

An Automated Real-Time Spacecraft Navigation System . .. ................. . 229
P. Burkhart, V. Pollmeier (NASA/JPL)

SESSION 4

Experience Gained From Launch and Early Orbit Support of the Rossi

X-Ray Timing Explorer RXTE) . .. ........ ... 233
D. Fink, K. Chapman, W. Davis, J. Hashmall (CSC)
R. Harman (NASA/ GSFC)

South Atlantic Anomaly Entry and Exit As Measured by the X-Ray Timing
EXplOTer . . .ot 249
E. Smith, S. Antunes (Hughes STX)
M. Stark (Univ. of Maryland)
B. Giles (NASA/ GSFC)
B. Gawne (ATSC)

The Solar and Heliospheric Observatory Mission: An Overview of Flight Dynamics
Support of the Early MissionPhase . . .. ................................. 257

R. Short, J. Behuncik (NASA/ GSFC)

vii



Flight Dynamics Mission Support And Quality Assurance Process . ............. 271
I. Oh (CSC)

Experiences in Interagency and International Interfaces for Mission Support . . . . .. 283
G. Dell, W. Mitchell, T. Thompson, J. Cappellari (CSC)
F. Flores-Amaya (NASA/ GSFC)

Pulsed Plasma Thrusters for Small Spacecraft Attitude Control . .. ............. 295
M. McGuire (Analex Corp.)

R. Myers (NYMA Inc.)

Homotopy Solutions of Kepler’s Equations . . .. ........................... 307
N. Fitz-Coy, J. Jang (Univ. of Florida)

SESSION 5
Conversion Of Osculating Orbital Elements To Mean Orbital Elements . . .. ... ... 317
G. Der, R. Danchick (TRW)
Downlink Probability Density Functions for EOS-McMurdoSound . ............ 333

P. Christopher (Stanford Telecom)
A. Jackson (NASA/ GSFC)

Heuristic Modeling for TRMM Lifetime Predictions. . . . ..................... 349
P. Jordan, P. Sharer (CSC)
R. DeFazio (NASA/ GSFC)

Autonomous Navigation with Ground Station One-Way Forward-Link

DopplerData . . ... ... 361
G. Horstkamp, D. Niklewski (CSC)
C. Gramling (NASA/ GSFC)

Reducing On-Board Computer Propagation Errors Due to Omitted
Geopotential Terms By Judicious Selection of Uploaded State Vector............ 375
M. Beckman (NASA/ GSFC)

viii



Application of Tracking and Data Relay Satellite (TDRS) Difference

One-Way Doppler (DOWD) Tracking Data for Orbit Determination
and Station Acquisition Support of User Spacecraft Without TDRS
Compatible Transponders . . . ...ttt

A. Olsezewski, T. Wilcox (CSC)
M. Beckman (NASA/ GSFC)

ix



FLIGHT MECHANICS/ESTIMATION THEORY SYMPOSIUM
MAY 14-16, 1996

SESSION 1






A Simplified Pattern Match Algorithm for Star
Identification

Michael H. Lee

Goddard Space Flight Center (GSFC)

Gregnbelt, Maryland, USA

Abstract |

A true pattern matching star algorithm similar in concept to the
Van Bezooijen' algorithm is implemented using an iterative
approach. This approach allows for a more compact and simple
implementation which can be easily adapted to be either an all-
sky, no a priori algorithm or a follow on to a direct match
algorithm to distinguish between ambiguous matches. Some simple
analysis is shown to indicate the likelihood of mis-
identifications. The performance of the algorithm for the all-
sky, no a priori situation is detailed assuming the SKYMAP star
catalog describes the true sky. The impact of errors and
omissions in the SKYMAP catalog on performance are investigated.
In addition, differing levels of noise in the star observations
are assumed and results shown. The implications for p0551ble
implementation on-board spacecraft are discussed.

l. Introduction

The simplest approach to star identification is the “direct
match” method. In this method, a star is considered to be
identified if only one reference star is within a given angle of
the observed star (transformed to an inertial frame by use of the
estimated spacecraft attitude) and within a pre-determined
tolerance of the observed light intensity.

With the advent of multi-observation star sensors, the
possibility now exists to replace the direct match method of
identifying stars onboard spacecraft with a pattern recognition
system. However, existing pattern matching algorithms are not
designed in a way which would allow maximum use of data from any
onboard coarse attitude sensors. The concept of the algorithm
described in this paper is to use a pattern match approach to
distinguish the true match from a set of potential matches for
each observed star. This allows a direct match approach to be



used to create the initial set of potential matches for each
observation. In this way, the attitude determined from the
coarse sensors, along with an estimate of the coarse attitude
accuracy, can be used to determine a small set of potential
matches for input to the pattern match algorithm. The algorithm
is then more efficient than a traditional pattern match for
ground systems and can be considered for onboard systems as the
memory requirements are greatly reduced. For ease of reference,
this algorithm will be known as the “hybrid” star identification
method.

Other analysis presented here attempts to provide some practical
guidelines in the use of pattern match algorithms. Various
parameters such as observation noise and the number of stars
identified have an influence on the likelihood of mis-
identification of observed stars. 2Analysis is presented to
determine the probability of incorrect identification for the
simplest pattern, the 3 star case, and to show the influence due
to pattern geometry.

Finally, the hybrid star identification algorithm will be applied
to the “all-sky” case, where no attitude information is
available. This is not a realistic case for most spacecraft
which should have at least a knowledge of the Sun direction, and
is especially not a reasonable approach if both the Sun and the
magnetic field vector for the Earth are available (as for any
low-earth orbiting spacecraft). However, although the hybrid
algorithm does not give any efficiencies over other pattern
matching algorithms in the all-sky case, the results for several
situations (3, 4, and 5 stars observed with differing noise
levels) illustrate the likelihood of mis-identification.

il. The Algorithm

The hybrid algorithm first uses a direct match algorithm which
matches the stars in the reference catalog to the observations,
choosing all stars within the (user input) angular and intensity
tolerances as potential candidates for identification. These
candidates are then input to the pattern matching portion of the
algorithm. BAn estimate of the current attitude is needed for
transforming the observations to the reference frame of the star
catalog. This estimate can be derived from coarse sensors or
based on previous star measurements propagated using gyro
neasurements.



The pattern matching part of the hybrid algorithm uses a pairwise
matching approach similar to the Bezooijen approach. For each
potential match for a given observation, the number of reference
pairs which meet the matching tolerance are totaled, but with the
restriction that only credit for one i-j pair will be counted for
the ith star observation even if several potential candidates for
the jth star meet the matching criteria. Clearly, counting
several matches from a given i-j pair would be an error and, in
this way, the maximum number of matches for a candidate for the
ith star will be limited to N-1, where N is the total number of
star observations.

After passing through all the pair combinations for the N
observations, all candidates with fewer than a preset number of
matches are removed from consideration and another pass through
the remaining candidates is performed. The minimum number of
matches for reliable star identification depends on the number of
reference stars observed and the noise in the observations. This
issue will be addressed in Section III.

The result is an iterative method, which was chosen for several
reasons. The algorithm is simplified in comparison to methods
which keep track of more information and can operate in one
iteration (References 2 and 3). Less code is required for the
iterative algorithm and, given reasonable initial attitude
knowledge (within several degrees), should not require excessive
processing. For some current missions (e. g. SWAS), memory
capability onboard is more of a driver than availability of
processing power, leading to the desirability of simplicity.

The iteration ceases when no more candidates are being removed,
at which point the candidate with the greatest number of matches
is chosen as the identified reference star. If there is a tie
for a given star observation, several courses of action can be
taken. For this paper, the star was determined to not be
identified.. Ties are generally due to close neighboring stars,
and can be eliminated by implementing “nearest neighbor”
restrictions on the reference star catalog.

If the algorithm is being used for single frame identification
(all the star observations are taken at the same time), the
number of matches should be equal to the number of identified
stars minus 1. In the all-sky simulation discussed in Section
IV, this is assumed to be the case. A match is considered to
have been accomplished only if the final set of identified stars



meet this criteria. Onboard star identification processes are
usually single frame.

Note that a “mirror image test” can be used to eliminate possible
mismatches where the reference stars generate a reflection or
mirror-image of the observed stars. This reduces the probability
of mis-identifying stars by half. If the expected noise of the
star sensor observations is low (on the order of 10 arcsecs) and
a reasonable number of reference stars is observed in the field
of view of the sensor, this probability is so low that the mirror
test is not necessary. For the all-sky results included in this
paper, extreme cases were investigated where the probability of
mis-identification was significant and the mirror image test was
implemented.

lll. Probability of Mis-identification

The 2 and 3 star pattern cases will be considered. The positions
of the reference stars are not randomly distributed, but in order
to develop an estimate of pattern match mis-identifications, it
will be assumed that the reference stars are evenly and randomly
distributed in the sky.

Let the angular separation between two observed stars be R
(radians) and let the maximum angular error given by the sensor
noise be E (per axis of the star sensor, radians). The needed
tolerance on pairwise matching to include all errors due to

sensor noise is given by 15=2J50E. With the assumption that the
reference stars are randomly and evenly distributed over the
celestial sphere, the expected number of random matches to two
observations separated by an angle R is given by

207rosin(R)0[20T]0NSTARS
4er

o NSTARS (1)

where NSTARS is the number of reference stars visible to the
sensor. The SKYMAP stars brighter than the predicted instrumental
magnitude of 5.5 (for the Ball CT-601 CCD) were used as a test
case, giving a total of 7306 stars in the test catalog. The
estimated number of matches for a pairwise matching tolerance of
4 arcsecs versus the actual number seen in the catalog are
tabulated below:



R (degrees) Predicted # Matches | Observed # Matches
1 18.1 22

4 72.3 102

8 144.5 144

11.31 204 .4 216

Table 1: Predicted Vs. Observed Matches for Star Pairs

Reasonable agreement between the theoretical and actual results
is seen given the simplifying assumptions. The goal is to reach
an order of magnitude estimate of the reliability of a pattern
match algorithm. Note that the above table gives the number of
stars matching the given separation R over the entire sky. If
there 1is some a priori attitude information, the number of
matches is reduced by a factor equal to the actual fraction of
the sky which is searched for potential reference star matches.

Emboldened by the success of this simplistic approach, now
consider a 3 star pattern. Let the 2 stars with the larger
separation provide the base for the 3 star pattern (which will be
a triangle unless the stars are co-linear). Assume that we have
two stars which meet the pairwise matching tolerance for the base
stars (with an angular separation of approximately R). Then the
conditional probability of a mis-identification (given that the
base stars have already been mis-identified) is the probability
of a reference star existing near the expected location of the
3rd observed star given the error tolerance T on the pair
matching algorithm. This area is depicted below (using plane
geometry as an approximation to the spherical case). The shaded
area in Figures 1 and 2 is intended to represent the intersection
of two error bands, where the center of each error band is one of
the two base stars.



Figure 1. Third Star Area to Pass Pairwise Tolerance Test:
Good Geometry Case

The probability of mis-identification of the 3rd star depends on
the geometry of the 3 observed stars. If the 3 stars are non-
linear, the expected number of reference stars which will meet
the pairwise match constraints approaches (for the best geometry
cases)

2
JZﬂ—ONSTARS (2)

4eg

However, if the stars are co-linear, the area where stars will
pass the pairwise matching test increases dramatically. This is
illustrated in the figure below:



Figure 2. Third Star Area to Pass Pairwise Tolerance Test:
Bad Geometry Case

This results in a significant increase in the number of mis-
identified stars. For the worst case geometry (the third star
co-linear and equidistant from the 2 base stars), the expected
number of reference stars which will meet the pairwise match
constraints is approximated by the following expression,

ReT
4ep

2eTe

o NSTARS (3)

where, as before, R is the separation of the 2 base stars. to
ensure that the probability of 3 star pattern mis-identification
is kept small, the worst case geometry must be considered when
computing the expected number of mis-identified stars.

It is important to note that each additional star which is
matched to a reference star via the hybrid match algorithm will
decrease the probability of mis-identification by a factor
dependent on the pairwise matching tolerance T (to a 3/2 power,
for the worst case geometry). The 1less noise in the star



observations, the smaller the pairwise matching tolerance T. For
the 5.5 magnitude test catalog used for Table 1, let the pairwise
matching tolerance be 4 arcsec and assume 4 degrees for the 2
base star separation. The expected number of mis-identified
stars, over the entire sky, is .003 using equations (1) and (3).
This is a worst case number, showing that the identification of 3
reference stars from our test star catalog for a low noise sensor
will be over 99.7% successful. Our vresult assumed a poor
geometry situation and no a priori attitude information - thus
grossly overestimating the probability of mis-identification.
However, if a 4th star were matched, using equation (3) for a
conservative estimate of the expected number of stars matching

the 4th observation gives about 107 - about a 99.99999% success
rate. As will be seen in the all-sky results, high levels of
noise in the sensor observations can be countered if more stars
are available for identification.

IV. All-sky Restuits

In order to test the hybrid match algorithm under extreme
conditions, no a priori attitude information is assumed. In this
case the hybrid algorithm is no different in concept from a
standard pattern match technique. All stars in the reference
catalog are taken as candidate matches for each observation.

The reference star catalog for this simulation is determined by
choosing all stars with instrumental magnitudes of 5.0 or less
from Version 3 of the SKYMAP catalog - a total of 4322 stars.
Note that the tracker sensitivity can be selected, making this
choice of catalog reasonable. The impact of observing non-
catalog stars is discussed later. No other magnitude criteria is
used to help identify stars, thus providing a greater challenge
to the hybrid identification algorithm. Data from XTE has shown
observed magnitude differences greater than 1.0 relative to the
predicted magnitudes, so relying on magnitude criteria for all-
sky matching can be ill-advised. Test cases are generated by
evenly distributing tracker pointing attitudes about the
celestial sphere and using those cases which contained the
required number of reference stars.

As discussed in the previous section, given a star sensor’s
characteristics (observation noise and field of view size), rough
estimates of the pattern match reliability in star identification
can be made. The tolerance T for pairwise matching must be at

least 242 times the sensor noise (per axis) in order to accept
all valid pairs. For the simulation, reference vectors from the
SKYMAP catalog have random noise added to each component of the
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pointing direction, with the noise limit given by the
value in column 1 of Table 2.

“noise”

Using equations (1) and (3) with R = 4 degrees, leads to the
following estimates for the expected number of mis-identified
star patterns for the shown values of T.

Noise/T 3-Star Patterns 4-Star Patterns 5-Star Patterns
(degrees)

0.00/0.001 0.0003 4*107° 5*¥107°
0.005/0.015 0.26 .0002 2*107'
0.05/0.15 83 2 .05

Table 2: Expected Number of Mis-identified Patterns

Using the pattern match algorithm with no a priori attitude
information, the following results were obtained. There were 114
3-star cases, 104 4-star cases, and 86 5-star cases. The
frequency of mis-identified patterns in the simulation is
reported as a fraction in the table below. Cases with expected
number of mis-identifications greater than 1 are not simulated as
each case would likely be mis-identified. TIf the expected number
of mis-identified patterns is small, the probability of mis-
identification is approximately equal to the expected number of
mis-identified patterns. Thus, the expected number of mis-
identified patterns should be a rough estimate of the fraction of
mis-identified patterns seen (up to values on the order of a few
tenths) . '

Noise/T 3-Star Patterns 4-Star Patterns 5-Star Patterns
(degrees)

0.00/0.001 0.00 0.00 0.00
0.005/0.015 0.09 0.00 0.00

0.05/0.15 - - 0.02

Table 3: Fraction of Mis-identified Patterns

In the statistics compiles above, cases where star patterns were
correctly identified but a reference star was ambiguous due to
the existence of multiple reference stars within the tolerance T
of the correct reference star were deemed successful - enough
stars were identified to allow computation of an accurate
attitude. The algorithm is not required to distinguish between
multiple reference stars closer than the assumed sensor noise.
Reasonable correspondence of the simulated results with the

1



estimates of reliability is seen. The simulated results show
better reliability (lower frequencies of mis-identification) than
the estimates and this is expected as the estimated reliability
assumed a worst case geometry for the star pattern.

The algorithm should behave well even if the sensor provides
spurious observations or tracks non-catalog stars. As a test of
this, the medium noise level (0.05 degrees) 5-star case was rerun
using a catalog which was missing one of the reference stars for
each 5-star pattern. In all cases, the remaining stars were
identified correctly, duplicating the expected performance of the
4-star, medium noise case. As for all pattern match algorithms,
the algorithm successfully eliminates observations which 1lack
catalog stars and will still identify the reference stars which
are available.

V. Implementation for Ground Systems

The implementation of star identification processing in a ground
attitude determination system can lead to some additional
problems. In ground systems, data over a long time might be
accumulated using gyro data. The gyro data is used to form
“clumps” of observations (which are assumed to represent
observations from a single star) and to propagate these groups

to a common time before transforming all the observation groups
to the reference inertial frame. Then, the quality of the gyro
data becomes the biggest factor in determining the parameters of
the star identification procedure. The hybrid algorithm has been
implemented in a test version of a ground system and spacecraft
data from XTE has been processed. During a large angle slew, the
number of distinct stars seen by XTE’s 2 star trackers can number
in the hundreds. To avoid the computing loads of testing all the
pair combinations which increases geometrically with the number
of stars observed, it was useful to feed the star observations in
to the pattern match portion of the hybrid algorithm in smaller
chunks (about 10 stars at a time). This has provided quick and
accurate response. As a practical consideration, if the gyro
propagation introduces a significant degree of error, it is
important to increase the minimum number of star matches needed
for star identification as the pairwise noise tolerance factor is
increased.

For XTE, the matching tolerance T can be set to about 10 arcsecs
while the spacecraft is inertial (and a minimum of 3 stars should
be tracked for high reliability). When spacecraft maneuvers
occur, the clumping errors force the tolerance T to be increased.
As an example, using uncalibrated gyros on XTE to propagate
observations (with approximately an 1 degree per hour

12



uncompensated bias), the matching tolerance T needed to be
increased to 125 arcsec to allow identification of all reference
stars. The minimum allowable number of matches was concurrently
increased to 5, thus boosting the reliability of the star
identification algorithm back to a high level. A feature of the
hybrid algorithm is to provide adaptability to both high and low
noise observations.

VI. Conclusions

The hybrid algorithm is robust with regard to inaccuracy in the a
priori attitude and provides adaptability to extremes in gyro
propagation errors and tracker noise. These features make it
attractive for implementation in ground systems.

For onboard systems, current star sensors have the capability to
track multiple stars simultaneously. Three or more stars are
available over most of the sky (97% of the random attitudes used
in the all-sky simulation had at least 3 stars brighter than
instrumental magnitude 5.0 within 4 degrees of the sensor
boresight). Missions such as XTE and SWAS are still using the
direct match method. This method was implemented for spacecraft
using trackers which could only track one star at a time and does
not fully take advantage of the multi-star tracking.

The direct match technique leads to tight restrictions on
spacecraft attitude determination accuracy over maneuvers, where
the spacecraft typically is using gyro rate information only. An
example of this is XTE, which must be within 200 arcsec of the
target attitude after a maneuver in order for the onboard star
identification to perform. Also, the spacecraft operators must
ensure that the observed stars in the field of view after the
maneuver have no other stars close enough to cause confusion - a
“nearest neighbor” restriction. Depending on the expected
accuracy of the spacecraft gyros, the nearest neighbor
restriction can impose complex requirements on the spacecraft
operators (SWAS is a good example of this, Reference 4). If a
more sophisticated star identification algorithm were to be used
onboard the spacecraft, these restrictions would be greatly
eased. The hybrid algorithm is put forward as an example of an
“add-on” to current onboard attitude determination software which
would provide the robustness of pattern matching with only a
modest increase in resource usage.
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REQUEST - A RECURSIVE QUEST ALGORITHM
FOR SEQUENTIAL ATTITUDE DETERMINATION

Itzhack Y. Bar-Itzhack
Flight Dynamics Support Branch, Code 553
NASA Goddard Space Flight Center
Greenbelt, MD 20771

Abstract

In order to find the attitude of a spacecraft with respect to a reference coordinate system, vector
measurements are taken. The vectors are pairs of measurements of the same generalized vector, taken in
the spacecraft body coordinates, as well as in the reference coordinate system. We are interested in
finding the best estimate of the transformation between these coordinate systems. The algorithm called
QUEST yields that estimate where attitude is expressed by a quaternion. QUEST is an efficient algorithm
which provides a least squares fit of the quaternion of rotation to the vector measurements. QUEST,
however, is a single time point (single frame) batch algorithm, thus measurements that were taken at
previous time points are discarded.

The algorithm presented in this work provides a recursive routine which considers all past
measurements. The algorithm is based on the fact that the, so called, K matrix, one of whose
eigenvectors is the sought quaternion, is linearly related to the measured pairs, and on the ability to
propagate K. The extraction of the appropriate eigenvector is done according to the classical QUEST
algorithm. This stage, however, can be eliminated, and the computation simplified, if a standard
eigenvalue-eigenvector solver algorithm is wused. The development of the recursive algorithm is
presented and illustrated via a numerical example.

L INTRODUCTION

The problem of finding attitude from vector observations is stated as follows. A sequence, bi’ i=1,2,

. ,» k of unit vectors is given. These unit vectors are the result of measurements performed in
vehicle cartesian coordinates, of the directions to known objects. The sequence, r, i=1,2, ... , k of

unit vectors, is the sequence of the corresponding unit vectors, resolved in a reference cartesian
coordinate system. We wish to find the attitude matrix, A, which transforms vectors from tlhe reference
to the body coordinates. Obviously, A has to be an orthogonal matrix. In 1965, Wahba posed this
problem as a least squares problem as follows. Let

k
LA) =3 E |b-Ar|? )

1
2 i
find that orthogonal 3x3 matrix, A, that minimizes L. We can weigh each measurement separately

according to the accuracy of the particular vector measurement. In addition, we may want to find the
“quaternion, rather than the matrix, representation of attitude. In such case (1) is replaced by

*Sophic and William Shamban Professor of Acrospace Engineering, On sabbatical leave from the
Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa 32000, Isracl
Member Technion Space Research Institute. IEEE Fellow. AIAA Associste Fellow.

This work was performed on a National Resecarch Council NASA Research Associateship.
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@ = % i}.—:.'1ai “’i' A(q)ri lz @

where a, i=1.2, .. , k are the positive weights assigned to each measurement. In (2) we are looking
1

for that quaternion, q, which minimizes J. Note that instead of minimizing J, we can maximize g defined
as

g@=1-Xq )]
It can be shown®*? that g(q) can be written as
T .
s@=q Kq @
where K is constructed as follows. Define
X
mk = i§l i (.2)
k
6= Tabr, (51)
m i=liii
'Y
;] X
B = -—— Y a (5.C)
m i=liii
k
S=B+B' (5.9)
1k
z= a-k iElai(bi X ri) (5.e)
Then
S-oll| z
K = =|— ©)
z o

where I is the third order identity matrix. It was shown2’3 that q*, of unity length, which maximizes
g(q) in (4), satisfies the equation

Kgq=Axq* @)

where A is a, yet undetermined, Lagrange multiplier. We realize that A is an eigenvalue of K and q* is
the eigenvector which corresponds to A. Substitution of this solution into (4) yields
8@ =2 ®

and since we wish to maximize g, we choose kmx, the largest eigenvalue of K, as the desired
eigenvalue, and then, q* is the eigenvector which corresponds to this Kmu. Davenport2 showed that once
A,mu is found, there is no need to solve for the eigenvector of K, since y*, the optimal vector of
Rodrigues paramete:s4. (also known as Gibbs vectors) can be computed as follows
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y = [+ o) -5z ©)

and the optimal quaternion can be found using the known relation

1 y*
q = (10)
l 2 1

JI+|y*

Shuster6’7 sﬁowed how to, easily, compute A.max to arbitrary accuracy, and how to deal with a singular
matrix in (9). It was also shown there that Xmax is close to 1 and is exactly 1 when the measurements
are error-free. (This property is due to the fact that all ai’s in (2) add up to 1, or, equivalently,
the introduction of the normalizing factor m in to (5.b, ¢, and e¢)). The algorithm for obtaining lma

X
and q* from vector observations discussed above is known as the QUEST algorithm.

QUEST is a single point attitude determination algorithm; that is, it utilizes the vector measurements
obtained at a single time point and uses them, and them only, to determine the attitude at that time
point. This way, the information contained in past measurements, is lost. This fact has been recognized
and in 1989, Shuster presented an algorithm which he named Filter QUEST that processes vector
measurements recursively. The Attitude Profile Matrix, B, defined in (5.c), which plays a central role
in the algorithm, is updated recursively for use in the QUEST algorithm. Much attention is given, in
that paper, to covariance calculations.

In the présent work, the matrix, which is updated recursively, is the K matrix defined in (5) and (6).
Indeed, as can be seen in the algorithm described above, K is the most important element in QUEST. In
the following section, we start our presentation of REQUEST by considering, first, the recursive
time-invariant algorithm. Then, in Section III, we develop the recursive algorithm for the time-varying
case and present an example. In Section IV we list the algorithm in a unified form. Finally, in Section
V, we present our conclusions and recommendation for further work.

II. THE RECURSIVE TIME-INVARIANT ALGORITHM

Assume that the body axes are non-rotating with respect to the reference axes. Also assume that k
vectors have been processed using the QUEST algorithm.

Let
x
m = i};‘.lai (11.a)
where m_ is not necessarily equal to 1. Also define
1 k T
O'k == iglaibiri (11.b)
k .
1 ¥ 1
Bk == iz’laibiri (11¢)
k
S =B +B' (114
k 4 b 4 )
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k
i=

a(bxr) (11.e)

1
Z = ——
m 1i1 7

k k

The parameters Gk, Sk and z, are then used to compute K, which for the case of k measurements, is
denoted by Kk. The latter is used to find the optimal quaternion, based on k pairs of measured vectors.
(Note that QUEST doesn’t require the computation of Kk itself). As mentioned earlier, the coefficient
m, is used in (11.b, ¢, and e) to normalize the weights, a,, such that Kmu is closed to 1. (See Ref. 5
for the solution of Km“). Now suppose that an additional measurement has been acquired; that is, the
k+1st pair has to be processed. The question is then, do we have to re-compute the Kk+ . matrix anew or
can we, perhaps, update Kk to included the added pair. As will be shown next, the latter is possible.
In fact, it forms the basis for the REQUEST algorithm. We formulate this quality of K ‘in the followin

proposition. ,

Proposition 1: Let

T
86k+l - ak+1bk+lrk+l (122)
8B, =a b r (12.b)
k+1 k+1 k+1 k+l
§S. =8B, + 6B (12.)
k+1 k+1 k+1 )
Szkﬂ = ak+l(bk+1x l.k+l) (12.4)
§S, - 806 I} oz
§K = k+1 k+1 k+1 (12.€)
k+1 sz'r So
k+1 k+1
then
m 1
= K + §K (13)
k+1 K+1 k mk+l k+1
Proof: By definition
k+1
M = 2% (14.2)
Now, it can be easily verifies that
k+1 k
A1 T 1 T 1 T
o) = Zabr = —— Zabr + —a b r (14.b)
k+1 mk+l i=liii mk+l i=l1'11i mk+l k+1 k+1 k+l
k+1 k
A 1 1 T 1 T
= Zabr =-—— FTabr + ——a b r (14.¢)
k+1 mk+l i=l i1 mk+l i=liii mk+1 k+1 k+1 k+1



A T _ T T -
Sea1 =Bt Y By < B +B + SBkn + 63k+l (14.49)
A 1 k+l 1 k
2= Zabx ) = Tabxn) s om—a b X1 (14.€)
k+1 k+1 k+1 ]
Using the definitions in (11) and (12), (14.b) to (14.¢) can be written as follows
m
X 1
= o+ So (15.3)
k+l mk+1 k mk+l k+1
m
k 1
= + 58S (15.b)
k+1 mk+l k kil k+1
m
x 1
= zZ + Oz (15.¢)
k+l1 mk+l k mk+l k+1

‘When S .0 Sk+1, and zZ . defined in (15) are used to form Kk+1’ using the format of (6), (13) results.

This ends the proof.

We have assumed here that we add only one new measurement to the k measurements that were already
processed. This can be extended to the case where two or more measurements are added as a group of
. measurements. Suppose that K was computed n times where at each time, one or more measurements were use
to compute (initially) or to update K. Let this K be denoted by Kn n=12, .. , where Kl is computed

using (5) and (6), and where the index k is the number of measurements used to compute Kl. Suppose that

j new pairs of vectors are measured and we want to use them in the updating of K. We can, of course,
update Kn j times, using the algorithm presented in Proposition I, and obtain the updated K, or we can

lump the new j measurements together, and update K only once. The latter is performed according to the
algorithm listed in the following proposition.

Proposition 2: Let
k+j
8mn-l-l = i=§+1 ai (162)

where k is the number of, already processed, pairs of vector measurements,

k+) T
80 1 = ika AT (16.)
k+j T
BB 1= ika AR (16.)
6s =8B +8B (16.9)
k+j
sz1'H-l = i=§+l ai(bix l.i) (16.)
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n+l n+l n+l
8Kn+1 - T (161)
Sz oo
n+l n+l1
then
m . =m + 8mn+1 (17.3)
and
m 1
=—2 K + 8K (17.b)
n+l m n m n+l
n+l n+l

This proposition can be easily proven along the lines of the proof of the first proposition. The case
described in the first proposition is a special case of the latter. we chose to split the introduction
of the updating of K into two cases merely for methodical reasons.

!

III. THE RECURSIVE TIME-VARYING ALGORITHM

The updating algorithm of the static case can now be extended to the case where the body rotates
between measurements. In the ensuing development we distinguish between two cases; namely, the
error-free propagation case, and the propagation which is based on angular rate measurement, and as
such, is contaminated by rate-measurement errors.

H11 Error-Free Propagation

Assume that at time t k pairs were processed, then the body rotated to a new orientation and there,
at time o j new vector measurements were performed. We wish to find the least squares fit of the

quaternion to the first k measurements, at this new time point, and then do the same when the new j
measurements are considered too. So first we are interested in finding 9. A which is the quaternion

that expresses best the attitude at time tn+l’ based on the first k measurements which were performed
previously, at time tn. Let us re-write the cost function of (4) for q at time tn based on the first k

measurements which, as mentioned, were performed at time t
n

T
gq J=q K a. (18)

It is well known® that during the rotation, q changes according to the differential equation

.1
q= iﬂq 19

where Q is a 4x4 skew symmetric matrix whose elements are the body components of the vector of the
angular velocity of the body with respect to the reference frame. The solution of (19) yields

q,,) = O 4qe) 20)

Ideally, when £ is known perfectly, the matrix <I>(tn+1,tn), known as Transition Matrix, transforms the
quaternion which represent the attitude at time tn, to that which represents attitude at time tn+l' For

simplicity of notations, we denote it, simply, by ®. The quaternion which we wish to transform from
time tn to time th is q " thus we set q(tn) = qnln. Finally, we denote the quaternion, to which
q /n transformed, by q., I’ thus we set q(tnﬂ) =q_, R Consequently (18) becomes

q =

n+l/n qn/n (21)
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Since Q is skew symmetric, ® is orthogonal, thus we can write

-1 T
Y = @ Ysin = @ L TR @2)
Substitution of ¢ "™ of (22) into (18) yields
. _ T T
g(qn/n) =8 (qn+lln) - qn+l /n nln‘I> qn+l/n @3)

We realize that the problem of finding 90 that maximizes g has been transformed into the problem of

finding q.. " which maximizes g’. Let

T
n+l/n =0 Kn/n @4)
then (23) becomes
Q. =4 25)
g qn+1/n - qn+1/n n+l/n qn+1/n

One may ask oneself whether thev problem of finding L WP which maximizes g’, is still related to
Wahba’s problem; that is, will the maximization of g’ yield a quaternion which is a least squares fit
to the k vector measurements. The answer is, of course, positive, since the maximizing 9
directly related, through (22), to 9 which maximizes (18), and the latter is the solution of Wahba's
problem, given the k measurements. It can be shown (see the Appendix) that, like before, q*nﬂln, which

is the 9 i that maximizes g’, given in (25), satisfies the equation

Kovt/n %11 = Masiin Gt (26)
and that 9., /18 the eigenvalue of K“+ n which corresponds to the largest eigenvalue of KM 1a® It

is interesting to note that this solution to the constrained optimization problem is not specific to
attitude determination. It stems from the fact that the cost function is defined as a. quadratic form of
a square matrix and that q is required to be of unity length. (See the Appendix). Also note that
although we assume error-free propagation, the measured vectors contain measurement errors. Finally,

note that Kn+ 1’ being a result of a similarity transformation on Kn I’ has the eigenvalues of the

latter even though its eigenvectors are different.

Now that we have established the fact that Kn+ 1/a is the proper K matrix for finding the least squares

fit of the quaternion at time ta based on all past k measurements, we can include j more measurements
performed at tn+1' For this we use (17.b) of Proposition II. Consequently from (24) and (17.b) we

obtain
T

n+l/n =0 Kn/nq, (27.a)
mn 1

et S Rastsn T I @7b)
n+1 n+l

We demonstrate the algorithm by way of the following example.
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Example:

Data base:

Given are 4 error free vectors in the reference coordinate frame:

0.267 -0.667 0.267 -0.447
rl = | 0535 r2 = |-0.667 ‘r3 = |-0.802 rd = | 0.894
0.802 -0.333 0535 0.000

and a rotation from the reference to body axes described by the following Euler vector:

o'= [09, 0.2, 0.8]

The corresponding quaternion is:
q(l)T= [0.423, 0.094, 0.376, 0.819]

The four r vectors are transformed to the body frame and noise is added to the transformed vectors. The
noise elements added to each component of the transformed vectors is drawn from a random number
generator. The standard deviation of the noises are:

ol = 0.01 62 = 0.05 63 = 0.03 o4 = 0.02

The noise element added to each component of r. is drawn from the random number generator whose
standard deviation is ci, i =1, 2, 3, 4. The vectors are then normalized. The resulting simulated

measured vectors in body frame are then:
0.688 -0.985 -0.280 0.303
bl = | 0.662 b2 = |-0.120 b3 = [-0.030 b4 = | 0.575
0.297 -0.123 0959 -0.760
and the weights are chosen to be:
a =g, i=1,2,3,4

1 1

Application of QUEST to the first two pairs:

Using, initially, at time to the first two pairs of vectors, rl1 and bl, and r2 and b2, we obtain Kl "
Its largest ecigenvalue and the corresponding eigenvector, which, according to our notations, is q, e
are:

7\.1 n= 1.0003551 qT/l = [0.427, 0.105, 0.383, 0.813]

The corresponding transformation matrix, A

U the correct matrix, A(1), and the difference (error)

matrix, are:
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0.685 0.712 0.156 0.700 0.695 0.164
Al n= -0.532 0.343 0.774 A1) = {-0.536 0361 0.763
0497 -0.613 0.614 0471 -0.622 0.625

| -0.015 0.017 -0.007

A1 n- A1) = | 0.004 -0.018 0.011

0.026 0.009 -0.012

The Euclidean norm of the error matrix is:

]A1 ne A(1)| = 0.044 (28)

This error stems, of course, from the measurement error contained in the b vectors.

Rotation of the body coordinate system:

We assume that after processing the first two pairs, which yielded A1 0 the body rotates for 1 sec at
the following angular rate:
@ = [0.1, 0.2, -0.3] rad/sec

The matrix ® which propagates the quaternion of this rotation (see (21)), and, AAjthe attitude matrix
which expresses the change in the body coordinates are:

[ 0.983 -0.149 -0.099 0.050 ]
0.936 -0.283 -0.210
0.149 0983 0.050 0.099
o= AA = | 0303 0951 0.068
0.099 -0.050 0.983 -0.149
0.181 -0.127 0.975

-0.050 -0.099 0.149 0.983

Measurement update of K:

We use AA to transform b3 and b4 to the new time point, t, Using these b’s as the simulated
measurements at tz’ we compute 8K2 according to (16), and update K, using (27), as follows:

T

K2/1 =0 Klll(b
K = inl_. K +-1_ SK
2/2 , 217 m, 2

The largest eigenvalue and the corresponding eigenvecto;' (whicﬁ is q, /2) of Kzl2 are:

— T —
;'2/2 = 1.0001957 q,, = [0.402, 0.253, 0.282, 0.834]



The corresponding attitude matrix is:
0.713 0.673 -0.195

A2/2 = 1-0.267 0518 0.813

0.648 -0.528 0.549
Check:
We wish, now, to check this result. This is done as follows. We use AA to transform b . and b2 to the

new time point, t. (Recall that b3 and b4 were already transformed in order to compute SKZ). Now we

apply the QUEST algorithm to all four pairs of r and b. The resulting quaternion should be eqtllzal to the
quaternion updated by the REQUEST algorithm. Indeed the two quaternions agree to at least 10 .

Remark:

When we compare, A(2) = AA-A(1), which is the correct matrix which transforms from the reference to
body axes at t2, to the attitude matrix A2 12 obtained by REQUEST (and, as we just checked, by QUEST as

well), we obtain:
0.005 -0.006 0.000
A212 - A(2) = |{-0.001 0.007 -0.005
-0.006 -0.001 0.007
The Euclidean norm of this error matrix is:
|A2f2 - A@)] = 0015

This error stems from the measurement noise in the b vectors and not from the algorithm. We note that

the latter error is smaller than IAI nc A(1)| shown in (28). This is expected, since A2/2 is computed

using four pairs of vectors whereas Al A is computed using only two.

L2 Noisy Propagation

In the preceding developments we considered the presence of noise only in the measurements and assumed
that the angular rate vector, ®, was known to us perfectly. We wish to consider now errors also in our
knowledge of ®. Let us denote the measured, or computed, @ by @ . We also assume that the error is

additive, thus we can write

® =0+E 29
where € is the error component in the measured angular rate vector. We distinguish between two cases;
namely, short time application, and long time application of REQUEST. The two are treated next.
H1.2.1 Short Mission Duration

Since a typical update rate is once per second, typical gyro noise does not cause a considerable
attitude error during such a short period. In fact, even with an update rate of once per 10 seconds,
the attitude error amounts to a very small attitude error. To illustrate this point, we turn to the
example. Suppose that we use a triad of single axis gyros, each having a constant drift rate of 1%,



which is about 100 times larger than that of inertial grade gyros. We use the first three measurements

to compute Kl A and from it, A1 n We then propagate Kl i using d>m, the gyro-error ridden transition

matrix, and obtain KZ/l,m and then compute the corresponding attitude matrix, A2 1. In parallel we do

the same using @, the correct transition matrix, and obtain A the corresponding attitude matrix.

2/1°
Doing so, we discover that the largest difference betweﬁ;n the magnitude of the eclements of the two

attitude matrices, A2 Mom and A 1 is less than 5.23-1G . Next, following the REQUEST algorithm, we

use the fourth measurement at time t, to compute 8K2, update both, K2 Nom and K2 e and compute the

corresponding attitude matrix for the correct and erroneous propagatio%s. The largest error between the
elements of the, updated, two attitude matrices is less than 2.55-10°. We see two interesting facts.
First, indeed, the gyro error has little effect on the propagated K and, consequently, on the,
propagated and the updated, attitude matrices. Second, the incorporation of a new measurement reduces
the little error, caused by gyro drift, even further. As a consequence of this discussion, we conclude
that for a short mission duration the build up of attitude errors as a result of gyro drift is
negligible and the algorithm given in (27) is adequate.

11.2.2 Long Mission Duration

Space missions where QUEST is traditionally being used, are of long duration, therefore the initial
measurements are propagated through the repeated use of (27.a) to the current time. This in turn
reduces the accuracy of those measurements, and as time goes by they may corrupt the attitude rather
than improve it. Consequently, we wish to gradually reduce the influence of old measurements, and
eventually eliminate them altogether. This is usually done wusing the Fading Memory = concept.
Accordingly, instead of using (27.b) for updating K, we may want to use the following algorithm

m

1
nm Kn+l /n + m 8Kn+1 (30.2)
n+l n+l

p

n+l/n+l

where 0 < P, < .1. Note that P, has to be larger than O for (28.a) to yield a meaningful K when only
one measurement i:s performed at ta Also note that when no process noise is present, we set P= 1
which. keeps the same relative yveig_hting'of past and present measurements as in (27.b). Thg value gf P,
can be determined experimentally where a larger propagation noise is compensated by a smaller P, value.
Note that p, can vary from step to step allowing the consideration of changing gyro noise. It should be
noted that the introduction of m in the REQUEST algorithm stems from our wish to maintain kmaxg 1.
This is important if we use the classical QUEST method for solving for kmax [see ref. 7]. (If we use a

given ecigenvalue-eigenvector solver routine, this is irrelevant). When (28.a) is used and we are still
interested in having kmax close to 1, we have to replace (28.a) by
p m

n n

1
K11+l/n+1 Tpm + Om Kn+1/n t pm +om 8Kn+1 (30.b)
nn n+l n n n+l

Note that, as before, this K update algorithm still assures proper weighing of the measurements; that
is, the measurement noise is properly considered.

IV. ALGORITHM SUMMARY
The REQUEST algorithm is summarized as follows.

1. Use the k measurements performed at the starting point, ts tocompute Kl n First compute:
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L=y lai (31.a)
k
1 T
o= N i}=:1a]lbiri (31.b)
k
k
1 T
P 230 Glo)
S=B+B' (31.4d)
1 k
zZ= 1_15: iE lai(bix ri) (3le)
Then compute:
S-ol| z
Kn= T 3L
z ]
2, Form the angular rate matrix:
0 -0 o
z y x
% Q= _;_ -(Dz 0 G)x (Dy (32)
O -0 0 i)
y X z
- -0 -0 0
X y z

where, o, i=1,2,3 are the components of the body axes, angular rate vector.

3. Compute @, the ftransition matrix from time t o time t ” corresponding to this, generally
time-varying, angular rate matrix. (Algorithms lfor computmg <I> can be found in standard Control
Theory or State Estimation texts. See e.g. Gelb .) ‘

4, Propagate Kl n according to:

T
K2/1 =o Kl/ld) 33)
5. Compute 8K2 as follows:
k+j
8m2 = i=§+ & (34.a)

(where k is the number of, already processed, pairs of vector measurements, and j is the number of
new measurement pairs performed at time tz)'

k+j

%, = . ¥, aib:‘r i (345)
k+j T
88,= 3 abr; (34.)
8, = 8B, + 8B, (34.4)
k+j
8, = 1B AOXT) (34.)
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oS, - 860 1 | oz
5K, = |—2—2 2 (34.9)
2 8z. | 8o
2 2
then set P, in the range
0<p <1 (34.9)
and compute
PSP s B 8K (341)
22" pm + sz 217 pm + sz 2 -
In preparation for the next time update, compute
m =m + 8m2 (34.)

6. Only if there is an interest in extracting the attitude from K2/2’ compute the attitude at this time
point (tz)’ otherwise go to step 7. The extraction of attitude from K2 p A0 be done using the
algorithm given in QUEST, or any standard software package that can compute eigenvalues and

eigenvectors of a symmetric matrix (e.g. Matlab ™ or Mathcadm). If the latter approach is chosen,
then, first, select the largest eigenvalue of K2 /2 and, then, compute the corresponding

eigenvector.

7. Go to step 2 and increase the appropriate indices by 1, or stop if so desired.

V. CONCLUSIONS AND RECOMMENDATIONS

In this work we presented a recursive algorithm for attitude determination, from vector observations,
that was derived from QUEST. The new recursive algorithm, which we call REQUEST, is based on the
propagation and update of the K matrix, one of whose eigenvectors is the sought attitude quaternion.
Using REQUEST, we do not lose information gathered by measurements performed at previous time points,
and since we use prior information, even one measurement at a particular time point, to which K is
propagated, is sufficient for updating the attitude. We showed how to apply the algorithm to cases
where more than one measurement is taken at the new time point. We demonstrated that under normal
conditions, and for short mission durations, there is no need to treat propagation’ noise (also known as
process noise). For long mission durations we do have to consider the process noise. This is done using
the Fading-Memory notion whereby the weight of the contribution of old measurements to K is reduced
with time. We presented an example to illustrate the algorithm.

As mentioned, the new algorithm shows how the propagate and update K, but once K is computed, its
largest eigenvalue and the corresponding eigenvector, which is the sought quaternion, are found using
the method of QUEST. If, however, a standard eigenvalue-eigenvector solver algorithm, is used, then the
eigenvalue and eigenvector can be found directly without solving for Rodrigues parameters, and without
the need to be concerned about matrix singularity problems (see (9)).

As a follow up to this work, it is recommended that REQUEST be tested using real spacecraft data, and
be tested against other recursive algorithms, such as the extended Kalman filter.
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Appendix
In this appendix we prove that a cost function formulated as a quadratic form of a real symmetric
matrix, with a unity constraint on the vector part of this form, has the following two qualities:
L Its maximum is equal to the value of the matrix largest eigenvalue.

II. The vector which maximizes the cost function is the matrix eigenvector which  corresponds to this
eigenvalue

We present the proof in a form of a question and an answer as follows.

Problem: Given
p=x Mx (Al where x| =1 (A2

and M is an nxn symmetric matrix, find x which maximizes W.

Solution: We use the method of Lagrange multipliers to incorporate the constraint of (A.2) in the cost
function expressed in (A.1). Accordingly, we wish to maximize ¢(x) given by

o) = X" M x + AL - x'%) | (A3)
We denote the maximizing x by x*, then we can express x as follows
X = x* + ch (A4)
where € is a scalar. Substitution of the latter into (A.3) yields
0(e) = (x* + €h)'M (x* + eh) + A[l - (x* + eh) (x* + eh)] (A.5)
An extremal point of ¢(€) satisfies the following
dé(e) =
ie |e=0 =0 for all h (A6)

Now it can be easily verified that since M is symmetric,

ggé_e)%:o = 2h (Mx* - Ax*) (AT
Application of the condition for a stationary point of (A.6) to (A.7), yields
h"(Mx* - Ax%) = 0 for all h (A8)
The latter condition can be met if and oﬁly if
Mx* = Ax* (A9
Substitution of Mx* given by the last equation into (A.1) yields
B = Axs Txx (A.10)

and since x* is of unit length, x*Tx*~ = 1, therefore (A.10) becomes

po=A (A.11)

max
and B takes its maximal value when A is kmax, which is the largest eigenvalue of
M. (Note that since M is symmetric, its eigenvalues are always real). Then
L =A (A.12)

max max

and x* is the eigenvector of M which corresponds to Z.m.

28



References

1.

10.

11.

Wahba, G., "A Least Squares Estimate of Spacecraft Attitude," SIAM Review, Vol. 7, No. 3, July
1965, p.409.

. Davenport, P., Private Communication, 1968.

. Keat, J., Analysis of Least-Squares Attitude Determination Routine DOAOP, Computer Sciences

corporation, CSC/TM-77/6034, Feb. 1977.

. Rodrigues, M.O., "Des Lois Géométriques Qui Régissent les Déplacement d’un Systtme Solide dans

L’espace, et de la Variation des Coordonnées Provenant de ces Déplacements Considérés
Independamment des Causes qui Peuvent les Produire," Journal de Mathematiques Pures et Appliquees,
{Liouville), Vol. 5, 1840, pp. 380-440. '

. Wertz, JR., (ed), Spacecraft Attitude Determination and Control, D. Reidel Publishing Co,,

Dordrecht, Holland, 1984, p. 512, 513.

Shuster, M.D.,  Algorithms for Determining Optimal Attitude solutions, Computer Sciences
Corporation, CSC/TM-78/6056, April 1978.

. Shuster, M.D., and Oh, S.D., "Three-Axis Attitude Determination from Vector Observations,” Journal

of Guidance and Control, Vol. 4, No. 1, Jan.-Feb, 1981, pp. 70-77.

. Shuster, M.D., "A Simple Kalman Filter and Smoother for Spacecraft Attitude," Journal of the

Astronautical Sciences, Vol. 37, No. 1, 1989, pp. 89-106.

. Wertz, J.R., (ed), Spacecraft Attitude Determination and Control, D. Reidel Publishing Co.,

Dordrecht, Holland, 1984, p. 512.
Gelb, A., (ed), Applied Optimal Estimation, The M.IT. Press, Cambridge, MA, 1988, pp. 285-287.

Ibid., 57-63, 296-298.

29






OPTIMIZED TRIAD ALGORITHM

FOR |
ATTITUDE DETERMINATION
Itzhack Y. Bar-Itzhack® ~ Richard R. Harman

Flight Dynamics Support Branch, Code 553
NASA Goddard Space Flight Center
Greenbelt, MD 20771

Abstract

TRIAD is a well known simple algorithm that generates the attitude matrix between two coordinate
systems when the components of two abstract vectors are given in the two systems. TRIAD, however, is
sensitive to the order at which the algorithm handles the vectors, such that the resulting attitude
matrix is influenced more by the vector proccessed first.

In this work we present a new algorithm, which we call Optimized TRIAD, that blends, in a specified
manner, the two matrices generated by TRIAD when processing one vector first, and then when processing
the other vector first. On the average, Optimized TRIAD yields a matrix which is better than either one
of the two matrices in that it is the closest to the correct matrix. This result is demonstrated
through simulation.

I. BACKGROUND

When the components of two abstract vectors are given in two different coordinate systems, it is
possible to find the orientation difference between the two systems. In pixiticular. we can easily find
the transformation matrix from one coordinate system to the other. TRIAD ™ is an algorithm that does
just that. The process of finding the matrix using TRIAD is as follows. Let w . and v, denote the column

matrices whose elements are, respectively, the components of the two abstract vectors when resolved in
body coordinates, and let v . and v, denote, respectively, the two column matrices whose elements are

the components of the abstract vectors when resolved in the other, usually reference, system. The
algorithm calls for the computation of the following column matrices in body coordinates:

r= wl/ |w1| (1.2
r=(rx Wz)/ ]rlx "w2_| (1.b)
= rlx r2 (1)
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and the following corresponding column matrices in the reference system:

s=v./ Ivll (2.2)
s= e v)|sx v, | 2b)
5,= slx s, 2.c)

Then the attitude matrix that transforms from body to the reference coordinate system is computed as
follows:

T T T
A—rl- s1+r2- s2+r3- s3 €))

where T denotes the transpose.

Following the process indicated in (1) and (2), we realize that the vector which is designated as
first, is normalized, but other than that, remains intact, whereas the other vector serves as a means
to define the second vector in the triad pair which determines the attitude. There is, therefore, an
uneven consideration of the two vectors where the first is given a preference in the determination of
A. We say that the first vector serves as an anchor in the computation of the transformation matrix. It
is, indeed, a good engineering practice to use the vector measured by the most accurate device as the
anchor vector. For example, it is very logical to use the vector measured by a star tracker as anchor
when the other vector is measured by magnetometers. One may wonder though whether this is the best one
can do. We maintain that we can do better, and propose a TRIAD-based algorithm which yields better
results, This algorithm, which we name Optimized TRIAD, is introduced next.

0. THE OPTIMIZED TRIAD

The accuracy of each vector-measuring device is quantified by the standard deviation of its error.
Accordingly, the vector measured by a star tracker is assigned a standard deviation smaller than that
assigned to a magnetometer, for example. Borrowing this notion, we assign a standard deviation to the
TRIAD-computed attitude matrix that corresponds to the standard deviation of the anchor vector used in
computing the matrix. Therefore, the attitude matrix Al, in whose computation vector no. 1 is used as

anchor, is assigned the standard deviation S which is the the standard deviation of vector no. 1.
Similarly, if vector no. 2 serves as anchor, we denote the computed attitude matrix by A2 and assign to
it the standard deviation o, which is the standard deviation of vector no. 2. Actually, since the

computation which yields the matrix is ncnlinear and is based on both vectors, there is no simple
linear relation between the standard deviation of the anchor vector and that of the resulting matrix,
but since we are concerned only with the relative accuracy of Al and Az’ the expression of their

accuracy by o, and o, respectively, fits well our final purpose.

It is well known (see the appendix) that when Y, and y, are independent unbiased scalar measurement of
an unknown scalar, x, and their measurement errors have standard deviations o, and S, respectively,

A . . .y . . . .
then X, the linear unbiased minimum variance estimate of x, is given by:

2 2

A %, %,

XES— Nt T3, “)
¢
L+, o + o,
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Following (4), we postulate thai given Al with its assigned standard deviation 01 and A2 with its
assigned standard deviation 0'2, we can find A’ , an estimate of A which is better than either Al or Az’
when using the estimator of (4); that is,

A _ 2 1 '
A= 2 2A1+ 2 zAz ®)

An interesting aspect of this estimator (as well as that of (4)) is the conclusion that adding some of
the worse result to the better, may yield an estimate whose accuracy is greater than that of the
better. Since A’ is a result of the addition of fructions of two orthogonal matrices, A is not
necessanly orthogonal, and thus is not a legitimate attitude matrix, unless it is orthogonalized.
Since A’ is close to being orthogonal, one orthogonalization cycle, as follows ', suffices:

= 05[A + ANy ©6)

It should be noted that the inversion of A’ is an easy task since the inverse of a 3x3 matrix can be
computed analytically. It is cumbersome, if not impossible, to prove analyucally that A is better than
either A1 or A ; 5 however, we can try to show it empirically. This is done in the next section.

1. ALGORITHM TESTING
III.1 Static Testing

In the static testing we chose some fixed attitude matrix, Atme, and the components of the unit
vectors vl and v, (two abstract vectors resolved in the reference system). Then Atrue was used to
transform v . and v, to the body system. To each component of the latter we added white measurement

noise drawn from a random number generator. The added noise was unbiased and had a standard deviation
6= 0.1 for the noise added 1o the components of the transform of v and o= 0.2 for the noise added to

the components of the transform of v, The noisy column matrices were designated as w, and w 5 TRIAD

was then applied to the four column matrices as described in the preceding section, once when vector
no. 1 was used as anchor and once when the other was used as anchor. Thxs generated the attitude
matrices A and A respectively, which then were used in (5) to generate A’ that was used in ©6) to

yield the opumlzed orthogonal matrix A The quaternions corresponding to Amw, Al, Az' and A were
computed and denoted by TR O ‘and ’q\ respectively. The error quaternion of each transformation

was computed as follows:

-1
Sq=q®q_ M

When q was q, we obtained 8ql, when q was q, we obtained 8q " and when it was ﬁ\, we obtained 86. (Note

that with the choice of (7) for computing the erroneous quaternion, we assume that 8q is the
transformation quaternion from the erroneous to the true coordinate system). Finally, we extracted from:
each Oq the corresponding rotation angle 8¢. We thus have expressed the error in the computation of the
attitude by a single angular error. That error was the angle by which the computed coordinate system
had to be rotated about the appropriate Euler axis in order to coincide with the true body coordinates.

Since 8¢ is a random variable, we ran 100 runs (realizations), each for 60 sec and each starting with a
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different seed. Along the time axis the computation was performed every second. We then averaged the
100 realizations at each time point and obtained the ensemble average of each error; that is, we
obtained:

_ , 100
&Pl(tk) =100 jfl&Pl . j(tk) (8.2)
_ 100
59,t) = 105 j}:l&pz ko, (8.b)
100
Aoy _ 1 A
8ot = 105 jfl&pj(tk) (8

where j denotes the number of the realization, and t denotes the point in time where TRIAD and Optimal
TRIAD were performéd. The value of Sal(tk), 8$2(tk) and Sé(tk) as function of tk is presented in

Fig. (1). We see that 8{75 was always the smallest. We also computed the running time average of each

-3
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_550 . . . . .
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c 8 ) e
5 5, % A A
E ¢
4.5
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535
C
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Fig. 1: Ensemble Average of the Error Associated with A:’ Az’ and A.

ensemble average from the beginning of the run to time t In other words, we computed:

k
—_ 1 —
L =5 209 ©.)
%0, = 1 2 80,t) ©b)
i=1
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The value of &pl'"(tk), &pz'w(tk) and &p“(tk) as function of tk is presented in Fig. 2. It is
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Fig. 2: Running Time Average of the Ensemble Average of the Emror
Associated with A , A, and A '

obvious from Fig. 2 that A s supérior to either ‘Al or A2. In other words, on the average, the

Optimized TRIAD yields better results for the case tested.
L1 Dynamic Testing

To check the influence of changing attitude, we repeated the same runs and computations as described

before, for a changing A. The change in A was due to a the body rotation about an axis ;; defined as
follows:

- 1 T T T

p= 73_'—[11,’ Jb’ kb] (10)
The rotation rate about this axis was 1 rpm. The graphs of the results of this case, which comrespondto
those presented in Figs. 1 and 2, are presented in Figs. 3 and 4 respectively. Since the idea behind -
this algorithm is borrowed from linear estimation theory of independent unbiased measurement errors,
one would expect the ensemble average of the angular error to be zero; however, as can be seen in Figs.
1 and 3, this is not the case. This discrepancy stems from the fact that the displayed error is
not linearly related to the averaged matrices. Also, the errors in the computed matrices, Al and AZ,

are not really independent.
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Associsted with A, A, and A when A_ was changing.

Finally, the vectors v and v, which are the components of the two abstract vector resolved in the

refgrence coordinates, were constant through all runs. The angle between the two vectors was close to
90 . To investigate the behavior of the algorithm for a different separation angle, we chose two new V)

©
and v, vectors the angle between which was close to 45 and ran the last test case. The results were

‘similar to those presented in Figs. 3 and 4, only that, as expected, the errors of all three algorithms
were nearly 25% higher. )
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V. CONCLUSIONS

In this work we have presented a simple TRIAD-based algorithm, which we call Optimized TRIAD, that
performs better than TRIAD itself. The algorithm consists of runing TRIAD twice, once with one vector
as anchor and once with the other vector as anchor, and weight averaging of the two resultant matrices
followed by one orthogonalization cycle. The weights are determined by the accuracy of the measuring
devices that produced the vector measurements. The idea behind this algorithm is borrowed from linear
estimation theory of independent unbiased measurement errors. However, although the blending of the two
TRIAD-generated matrices is based on an unbiased minimum variance formula, the ensemble average of the
angular error is not zero, as can be seen in Figs. 1 and 3. This, however, is no surprise, because the
displayed error is not linearly related to the averaged matrices. Also, the emrors in the computed
matrices, A . and Az’ are not really independent.

We have shown empirically that, indeed, the accuracy of the Optimized TRIAD is better than that of
TRIAD even when the latter uses the vector measured most accurately as anchor. It should be noted
though that in this statement we refer to the average performance. That is to say that occationally
TRIAD may yield results which are better than those obtained using Optimized TRIAD, but on the average,
Optimal TRIAD performs better. It is interesting to note that like in Kalman filtering, the correct
blending of the better TRIAD-generated attitude matrix with the worse, yields, on the average, a result
which is more accurate than the better, ‘

Appendix
Theorem: Given y : and Y, where:
y=x + v . (1.a)
Y= x4, (1b)
and
E{vl} =0 (2a) E[vzl =0 (2¢c)
2 ) 2 . E{vlv2} =0 (Qe)
E{vil=0ad (2b) E{vil=¢ (24d)
1 1 2 2
- Then, the following linear estimator:
. . . 2 2
(o] ]
2 1
}Q: z 2Nt 2 2% @)
‘ ‘ _ 01 + G 2 o 1 + 0‘2
yields an unbiased minimum variance estimate of x.
Proof:
A linear estimator of x has the form:
A -
x= k1y1+ k2y2 @)
Substitution of (1) into (4) yields:
A
X = (k1+ kz)x + klv -+ l:z*v2 (5)



Using (5) we can write the estimation error as follos:
A A _ . .
e=x-x=(1- kl- kz)x klvl l:zv2 (6)
Due to the unbiasedness of vl and v, expressed in (2.a,c), we obtain from (6):
Ele} = (1 - kl- kz)x Q)]

For the estimate to be unbiased, E{e} has to vanish, which yields the necessary condition for
unbiasedness: '

k1= 1-k (®)
Using (8), (4) becomes:
A
?: =(1-k)y+ky, ®

and (6) becomes:

e=- klvl- 1(2v2 (10
Now
Varle) = o 4 g(e? - Ble}) (1
which in view of the unbiasedness of e becomes:
z = E{ez} (12)
Substitution of (10) into (12) yields:
2 22 22
o, = E{klv Lt kzv2 + 2k1k2vlv2} (13)
Using (2.b,d;e) and (8), (13) becomes:
2 2 2 2 2
ce =(1- k2) °1 + k202 (14)

We want the estimator to be of minimum variance. From (14) we see that we still hgve one more design
parameter to choose; namely k2. Consequently, we choose k2 so as to minimize c. Searching for the

minimum we differentiate (14) with respect to k2 and equate the result to zero. This yields:

d _ 2 2 _
a’ig":) =21 - ko] + 2kl =0 (15)
Consequently:
2
01
k= 5 (16.2)
1 2

It can be easily verified that the stationary point which c: has at this kz’ is a minimum point. Using
(16.a) in (8), we obtain:
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G2
k= (16.b)
1 02 + 02
Substitution of (16) into (4) yieids:

. 0_2 0_2

A 2 1

x—02+O'ZYI+O'2+O'2y2 (17)
2 1 2

Q.E.D.
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ABSTRACT

This paper presents a number of variations on the Davenport algorithm for in-flight gyroscope recalibration, or
first-order initial calibration, specifically tailored for use with a minimum amount of satellite telemetry data.
Central to one of the techniques described is the use of onboard integration of gyroscope data together with a
detailed model of scheduled satellite slew profiles. Methods are presented for determining adjustments to either
parameters for the standard linear model (i.e., a drift rate bias vecior and/for a scale factor/alignment
transformation matrix) or individual gyroscope scale parameters, both linear and nonlinear, in cases where the
alignments are well known. The results of applying the methods in an analysis of the temporal evolution and
nonlinear response of the gyroscopes installed on the Hubble Space Telescope following its first servicing mission
are discussed. The two effects, when working coherently, have been found to result in slew errors of almost
1 arcsecond per degree. Procedures for selecting optimal operational gyroscope parameters subject to the
constraint of using a linear model are discussed.

Introduction Although the HST gyroscopes are “fairly stable,” a
Reference 1 presents a derivation of the Davenport performance analysis conducted in September 1995
gyroscope calibration algorithm, which has been (Reference 3) has indicated that in the 18 months
used for the in-flight calibration of gyroscopes for a following the first HST servicing mission, the
number of spacecraft missions, including those of gyroscope response has changed systematically, the
the High Energy Astrophysics Observatories and the errors being most manifest in negative yaw
Hubble Space Telescope (HST). As usually maneuvers wherein systematic errors of roughly
implemented, and, in particular, as implemented for 0.8 arcsecond per degree occur.

the HST mission (Reference 2), the algorithm

assumes that the user has available for use in the Given this recent experience with the HST
calibration process a continuous and complete set of gyroscopes, we have found it desirable to develop
gyroscope data extending from an initial to a final an algorithm that permits recalibration of the
spacecraft attitude (as determined by independent gyroscopes, at least to first order in the change
reference sensors) for an adequately large number of parameters, using a data set that is both much
maneuvers. Empirically, we find that this constraint reduced in volume and readily available during
causes gyroscope scale factor and alignment normal mission operations. We also have found it
calibration to be one of the more labor- and data- useful to extend the algorithm to allow study of both
intensive activities needed in support of mission isolated and nonlinear scale corrections. The
operations. Fortunately, we also have found that the algorithm that we present here requires as input
scale factor and alignment parameters for the from telemetry only the attitude error measurements
gyroscopes used for the HST mission are fairly determined by the onboard computer (OBC)
stable; calibration is usually required only following pointing control subsystem following large vehicle
initial deployment of gyroscopes (i.e., following maneuvers. All other required input can be obtained
HST’s initial deployment in April 1990, activation from the schedule of commanded maneuvers and the
of reserve gyroscopes in response to gyroscope spacecraft  parameters  characterizing  those
failures, and installation of new gyroscopes during maneuvers.

the first HST servicing mission in December 1993),
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The body of this paper is divided into six sections,
excluding this introduction. These include (1) back-
ground on the basics of the Davenport algorithm,
(2) a reformulation taking advantage of OBC inte-
gration of gyroscope data and modeling of planned
maneuver profiles, (3) some comments on the cali-
bration of gyro bias, (4) an extension to both
isolated and nonlinear scaie factor corrections, (5) a
discussion of selection of measurement weights to
be used in the algorithms, and (6) an application of
the algorithm to data accumulated for the gyro-
scopes used for the HST mission.

The Davenport gyroscope calibration algorithm, as
well as the variations of it discussed in this paper,
are envisioned as applied in a batch mode least-
squares algorithm. Batch mode processing is strictly
appropriate only if the time scale for collection of
the calibration data is short compared with the time
scale for any variation that may apply to the state
vector parameters. Empirically, in the case of the
gyroscopes used on HST, we have found the scale
factor and alignment parameters sufficiently stable
that a batch mode approach for their calibration is
operationally viable. In cases where this fails to be
true, reformulating the calibration equations
presented here in terms of a Kalman filter (e.g.,
Reference 4) should be considered.

Section 1 - Background on the Basics of the
Davenport Algerithm

Reference 1 presents the gyroscope calibration
algorithm that is used in the HST mission for the
calibration of scale factors, alignments, and biases
of the gyroscopes when one or more gyroscopes are
first activated for operational use. The basic
equations are as follows. Consider a satellite gyro
system consisting of N, single-axis gyroscopes. In
response to some angular motion of the satellite, the
output response column matrix of gyro counts, C,
consists of the N, individual gyro readings. The
response vector is translated into a measured angular
velocity, Q,,, in the spacecraft frame via

QM=GOC-D0 1

where G, is the 3xN, scale factor / alignment matrix,
and D, is the gyro system drift rate bias expressed in
the spacecraft frame. The goal of the algorithm is to
determine correction matrices m and d that may be
applied to G, and D, so that a modified equation (1)
will yield the true angular rate, Q, as indicated in
equations (2a) - (2c).
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G=({+mG, 22
D=(,+mD,+d (2b)
Q=GC-D = I,+m)Q,-d (2c)

where I, is the 3x3 identity matrix. Gyroscope
miscalibration information is sampled through any
given maneuver via the error quaternion

Q = QRQG-l 3

where Q, represents the true vehicle rotation as
determined from reference star measurements, and
Q, represents the vehicle rotation inferred from the
gyroscope measurements. As discussed in
Reference 1, 8Q represents a rotation from the
gyro-inferred to the true postmaneuver attitude,
expressed in the premaneuver reference frame. The
information content of 8Q is related to m and d via
the sensitivity equation

Z=12]T(Q-Q,)d

(4a)

12/T(mQ, -d)dt

(4b)

where Z is the vector component of 3Q, T is the
matrix that transforms vectors to premaneuver
spacecraft coordinates, and the time integral is over
the whole maneuver. Because equation (4b) is
linear in m and d, it can be used as the basis for a
linear least-squares algorithm to provide estimates
for m and d. If a solution for all 12 correction terms
is needed, at least 4 independent “maneuvers” are
required to perform the calibration. The maneuvers
must provide a reasonable sample of pitch, roll, and
yaw variation, as well as an independent sample for
bias determination; the latter is permitted to be a
period of essentially constant attitude.

Although the information content is unchanged, it is
often more convenient to reexpress Z in terms of an
error vector, {, representing the rotation from the
true postmaneuver attitude to the intended (and
gyro-inferred, assuming closed-loop control) post-
maneuver attitude, i.e., the rotation that the
spacecraft must perform after it determines its post-
maneuver error. The vector { is related to Z and
{m, d} via

4

-T.'Z

SIRTIIT(mQ, -d)dt &)



where 1 represents the maneuver duration time, and
its use as a subscript on T, means that T is to be
evaluated at the maneuver end-time. The matrix T;"
(which equals T.") is thus the premaneuver to post-
maneuver reference frame transformation matrix.

Section 2 - Use of OBC Gyro Data Integration
and Model Maneuver Profiles

As discussed in Reference 1, equation (5) is accurate
only to first order in m and d, implying that the
associated least-squares algorithm is intrinsically
iterative. The matrix terms {, T, and Q,, must be
reevaluated on each iteration. Multiple iterations
can only be applied if a complete set of gyroscope
data from throughout each of the calibration
maneuvers is available. In this section we discuss a
procedure that excludes the possibility of multiple
iterations, the gain being a drastic reduction in the
total volume of data required to perform the calibra-
tion. This can be significant if either (1) the sheer
volume of data for frequent, normal calibrations
becomes unwieldy or (2) the standard telemetry
format used does not contain an adequately dense
sampling of gyro data for accurate integration.

If calibration needs are adequately met via a first
order correction, it is possible to implement an
algorithm with drastically lower data requirements.
Integration of the full set of gyroscope data is
required at two points in the use of equation (5):
first in the determination of Q,, for the construction
of {, and then in the time integral over (Tm<,).
Ground processing of gyro data to determine Q, can
be eliminated if the spacecraft OBC maintains and
transmits an estimate of the spacecraft attitude based
solely on gyroscope data, at least through the time
period between the accumulation of star sensor data
for pre- and postmaneuver definitive attitude
estimation. Sampling the OBC’s pre- and postma-
neuver attitude estimates then allows construction of
Q, as the connecting eigenvector rotation between
the two. Ground processing of the gyro data for use
in the integral over (Tm<),) can be eliminated if a
sufficiently precise mode! of the maneuver profile is
available. This follows because, to first order in the
correction terms, equation (5) is unchanged if mQ,,

is replaced with mQ,, Q, being the planned angular

velocity as a function of time based on spacecraft
design parameters. 'We make the latter substitution
in what follows.

The simplifications noted in the preceding para-
graph allow the elimination of all ground processing
of the raw gyro data. The elimination of ground
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processing of the reference star data may also be
possible, although this results in a smaller gain. For
many satellites, the OBC generates an attitude error
estimate  based upon postmaneuver reference: star
measurements and uses this estimate to generate an
error nulling maneuver. If the vehicle attitude is
maintained 'accurately by the onboard pointing
control system during the periods betwéen maneu-
vers, the postmaneuver error nulling maneuver will
correspond to the error vector { required for our
analysis. If this error vector is included in telem-
etry, no other spacecraft data are required.

We assume finally that each maneuver is a pure
cigenaxis maneuver. This allows the analysis to be
done in a coordinate system, designated here with a
prime (), in which the x'-axis is aligned along the
maneuver axis. Expressed in the primed frame,

equation (5) becomes
R(20) =-T7 |T"(m'Q,-d") dt (6a)
1 0 0
I =10 cos[0(t)] -sin[6(t)]
0 sin[8(t)] cos{6(t)]
=RTR'=RTK' (6b)
m =RmR'=RmR' (6¢)
d =Rd (6d)
Q,= [aW), 0, 0T =RQ, (6e)

where R is the transformation matrix that converts
premaneuver spacecraft coordinates to the prema-
neuver primed frame, 6(t) is the maneuver angle as
a function of time, and ® = d9/dt.. The form of 0(t)
will depend upon the total maneuver angle, ®, and
design parameters governing the execution of
maneuvers. To first order, R may be based on the
planned maneuver quaternion, Q,. The eigenvector
and rotation angle set, {r, ¢}, defining the quater-
nion representation of R is constructed from the
spacecraft frame Q, eigenvector, 1}, and the space-
craft frame standard unit vectors, {x, y, z}, using

r = (xxn)/Ixxnql
(7a)
(7b)

(-ym, +zm) / () + )"

cos’(x-m) = cos’(7,)

S
H



The simple forms of equations (6b) and (6¢) allow
equation (6a) to be reexpressed as

R(28) =-T [K,[m], - K,d'] (8a)
K, 0 0

K, =0 K, K, (8b)
0 K, K,

K =Jad (8¢c)

K, = Jcos(0) o dt (8d)

K, = Jsin(0) o dt (8e)

where [m’], indicates the column matrix formed
from the first column of m’. Note that the elements
of K, are analytic, i.e., K, =0, K, =sin(®), and
K, =1[1-cos(®)], whereas K, is equal to the
maneuver duration, 7. The functional form of 0(t)
enters only viaK_ and K .

The multiplication of T°;" into K, and K, in equa-
tion (8a), together with an application of the sine
and cosine laws for two angle sums, produces

R(2C) = - [K* [m], - K*,d'] (9a)
K, 0 0
K+, =|0 K* K* (9b)

0 —K*, K*,

K*, = Jcos(@-0) o dt (9c)

K*, = Jsin(@-0) o dt (9d)

Because K, depends only on @ and not the form of
0(t), it can be shown that K* = K. This
relationship holds for K*_ as well (actually, for all k)
if o(t) is an even function of time about the
maneuver midpoint. This constraint, which is fairly
standard for spacecraft maneuver profiles, also
yields the following convenient equations for K,
and K, (expressed for general k):

K, = cos(®/2) F(©) (10a)
K, = sin(®/2) F(®) (10b)
F.(®) = Jcos [6() - /2] & dt (10c)

We now need to transform equation (9a) back into
the spacecraft frame so as to have { related to m and
d rather than to m’ and d’. Defining m as the 9-by-1
column matrix {[m),", [m],", [m],"]" and using equa-
tions (6b) and (6c), we can rewrite equation (9a) as

2¢=-RK*Bm +R°K*Rd (11a)

Bij+3(n»l) = Rij Rln (1 lb)

where equation (11b) defines the elements of the
3-by-9 matrix B. Equation (11a) is our new least-
squares algorithm sensitivity equation. Its ‘use
removes the need for an integration of the gyro
telemetry data. The only required time integrations
are for K*  and K*,, or, more simply, F(®) if the
symmetry constraint on c(t) is applied. Appexdix A
presents a specific, fairly common maneuver profile
usable in the latter evaluation.

Section 3 - Bias-Only Calibration Assuming Fixed
Scale and Alignment

We consider now the application of the algorithm of
Section 2 to a bias-only calibration. This begins
with the constraining assumption m = 0. This
constraint is reasonable for many operational
scenarios; empirically, it has been found that
spacecraft gyro biases can change significantly
within as little as a single day, whereas time scales
for scale factor and alignment are considerably
longer. For this situation, equation (11a) reduces to

2{ =R K*,Rd (12)

Two data gathering scenarios are of possible interest
for this calibration. For the first scenario, the
spacecraft is held at constant, or nearly constant,
attitude over the time period of interest. “Nearly
constant” in this context means that the magnitude
of any net maneuver angle must be smaller than the
product ddAt, where &d is the maximum permitted
error in the estimate for d, and At is the time period
between two reference attitude measurements. For
this case, [R" K* R] reduces to LAt, and equa-
tion (12) becomes

d=2{/At (13)

We have used At rather than T here because there is
no scheduled or executed maneuver for which we
can evaluate ©(®). The vector { may be constructed
from separate initial and final reference star
measurements or from an OBC-determined aititude



error at the end of the time period if the spacecraft
applied an attitude correction at the start of the
period. In the latter case, care must be taken to
ensure that the onboard attitude propagation across
the time period involved the use of gyroscope data
only, i.e., no control-law feedback based on
reference star data.

The second data gathering scenario uses the proce-
dures outlined in Section 2 applied to equation (12).
The potential operational advantage of using this
approach arises if a set of dual mode gyroscopes,
i.e., sensors with high-rate and low-rate modes, is
being used -- the high-rate mode being used during
large maneuvers to allow greater dynamic range,
and ‘the low-rate mode during periods of near-
constant attitude to allow greater precision. For
such gyroscopes, equation (13) can be used to
calibrate the high-rate mode bias only if the gyro-
scopes are commanded to remain in high-rate mode
during the calibration period, implying that
dedicated spacecraft time would be required for the
calibration. In contrast, the use of equation (12)
would allow relatively frequent high-rate mode bias
calibrations based on serendipitous maneuvers.

A caveat pertains here -- one of relevance to the
next section. An estimate of the bias based on equa-
tion (12) applied to a single maneuver may fail to be
good if the estimate for the scale factor / alignment
matrix G is insufficiently accurate, because of either
poor initial calibration or an actual change in the
gyroscope parameters since the time of calibration.
The effect of errors in estimates for linear scale
factors would tend to cancel each other in the
estimate for d if the least-squares fit is performed
using an ensemble of randomly directed maneuvers
or paired sets of oppositely directed maneuvers.
Taking advantage of this fact to reduce the influence
of possible scale factor errors may be desirable.

Section 4 - Isolated and Nonlinear Scale Factor
Calibration

The original Davenport algorithm combines the
observable aspects of alignment and scale factor
changes into the single change matrix m. It also

assumes that gyroscope response is purely linear.

We have found it useful to be able to study the
indiviual gyroscope response curves, with respect to
both nonlinear corrections as well as temporal
variations of the dominant (i.e., linear) terms. In
this section we discuss an extension of the algorithm
presented in Section 2 designed for this purpose.
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To keep the initial discussion simple, we will
assume that the state vector for our problem is
restricted to scale factor adjustments. Specifically,
we assume that the gyro alignments are well known
and fixed, and that the adjustment to the operational
drift rate bias is restricted to that associated with
scale factor corrections (i.e., the “mD,” term in
equation (2b)), with no intrinsic bias changes
permitted (i.e., no d term in the state vector). We
will relax both of these simplifications eventually.
We will, however, not attempt to model ongoing
temporal changes in the drift rate bias that occur
during the time period over which the calibration
data are accumulated. Given that bias changes
occur relatively rapidly and are likely to be signif-
icant over the data accumulation time period, this
last simplification may at first glance seem inappro-
priate. If, however, a good estimate of the changing
bias vector associated with the operational align-
ment and scale calibration is maintained throughout
the period of data accumulation (using the methods
of Section 3), the effect of the bias will have been
removed on an ongoing basis. From this perspec-
tive, we see that we are not actually neglecting the
changing bias; rather, the bias effects have been
precorrected as part of ongoing operations.

To allow for nonlinear scale effects, we assume a
model for gyroscope responsivity of the form
C.=8,[Q, + X5, 8(Q,)] (14)
where subscript n indicates the nth gyroscope, C, is
the resultant gyro reading, S, is the nominal (or
current best estimated) gyro scale factor, Q__ is the
spacecraft angular rate projected onto the gyro input
axis, and the summation over k represents a set of
small corrections to the predominantly linear
relationship between Q, and C,. The parameters s,
are correction coefficients applied to the functions
£(Q,,). The latter can be any convenient set of
functions, subject only to the constraint that the
same set of functions be used for all of the
gyroscopes. To minimize the eventual size of the
least-squares state vector, the functions should be
selected so that a good fit can be found with as few
correction functions as possible. For our HST
analysis, we have found it convenient to use two:
2,(Q)=Q and g,(Q) =g () =IQl. In this model,
s, Tepresents an average linear correction, and s,
represents the difference between scale factors for

positive and negative maneuvers.



We assume next that an acceptably accurate inverse
to equation (14) can be written in the form

Q,, = C/S, + 20,g(C/S) (15)

In principle, each ¢, is a function of the full set
{S.1s Sp2» --}. However, if the sum Y5, g(Q. ) and
all of its individual terms are small relative to Q, ,
and if the correction functions g, vary continuously,
then G, = -8, to first order in the correction terms
for all n and k values. We will be using this
approximation in what follows.

For notational compactness, equation (14) can be
rewritten as

C=S(AQ + Is [* AD]) (16)

where C is a Ng-by-1 column matrix (the C’s), S
and s, are N-by-N, diagonal matrices (the S,’s and
8.’S), A is the N -by-3 matrix of gyro input axis unit
direction vectors, and the symbol [*7] is defined
such that

[* V1 = [&(V), &V, ... 8 (VT a”n

for any N-by-1 column matrix V. We also need a
matrix version of equation (15) that gives Q,, as a
function of C. If N, exceeds 3, our equation must
include a weighting scheme for how the gyro data
are to be combined in forming Q,. We use the
following equation:

Qy

[A"AI'ATQ,

R(S'C+Zo, 'O (19)

where Q, is the N,-by-1 matrix formed from the
various ,, estimates, R = [A"A]'A", and o, is an
N,-by-N, diagonal matrix (the ¢,.’s). By using
equation (18) as the mechanism for constructing Q,,
from C, we have selected a convention whereby
equal weight is given to each of the components of
Q.. This is a change from the more typical
convention . in constructing the matrix G, for
equation (1) whereby equal weight is given to each
component of C.

At this point we should clarify notfation a bit in
" preparation for . constructing = the least-squares
algorithm for a recalibration of the s, coefficients.
Equation (16) should be viewed as applying the
true's, values; it represents the actual response of

the sensors. In contrast, equation (18) represents the
users interpretation of the counts; thus the ¢, are
functions of ({s,,, S, --}» Where the subscript 0
indicates current estimate. The “small correction
terms” approximation thus leads to 0, =-s,,. The
least-squares state vector will be the set { s, } for
all n and k, where 8s,, =S, - Sy,

To proceed with a formulation of an extended least-
squares algorithm based on equation (4a), we
require an expression for (-, ) linear in the
correction terms 8s,. Combining equations (16) and
(18) yields

Q, = R {AQ +Z5 [*AQ]
+20,[* AQ+Zs [AQD])] (19)

The assumptions that the g functions vaty
continuously and that all of the s, and o, elements
are small imply that terms of the form
o, [* (AQ + X 5, [*AQ])] are equal to o, [* AQ] to
first order. Using this simplification and setting
O, = - §,, yields

(2-9,) = -RX (& ["AQ]) (20)

To be able to follow our analytic maneuver model
approach as developed in Section 2, we insert equa-
tion (20) into equation (4a) and apply appropriate
transformations to the “primed” reference frame.
The resulting sensitivity equation is

20 = KT [T RRX{Ss, [* [ARTIQT)dt
= R I{TIT" RR[* [@AR"],],)de}(3s, ] (21)

where [*'[0AR"]], indicates a diagonal matrix
formed from the elements of [** [@AR"],], and [3s,].
indicates the column matrix formed from the
diagonal elements of ds, (recall that 3s, is a diagonal
matrix). If we impose the additional constraint on
each g that it satisfy the commutivity relation
g.(ab) = g.(a)g.(b), equation (21) can be written in
the convenient form

20 = RIK*, (R R[*'[AR"],) [5s]). (22)

where the K*,, matrices are defined analogously to
the K*, matrices discussed in Section 2, with g ()
replacing «° in defining the required components.
For the case of {g,(2) =Q; g,(Q)=g(Q)=1Ql},
equation (22) becomes



2¢ = RF'K*, R X ([[AR™,], [3s,).
+ ["[AR'L], [8s]c) 23)
where the symbol ['*] in the last term implies that
the absolute value operation is applied to all of the
elements of [AR"],. The K*, matrix applies to the
last term with no adjustments because o is by
definition positive in the primed reference frame.

For each maneuver used in the calibration process,
equation (22) provides three linear equations in the
Ngk_, unknowns {3s,}. To get proper visibility for
accurately measuring all of the {8s,} elements, a
range of both positive and negative maneuvers in all
of the pitch, roll, and yaw directions must be
sampled. With an appropriately large number of
maneuvers sampled, equation (22) can be used as
the basis for a standard least-squares algorithm to
determine estimates for the correction terms.

As with the original Davenport approach to the
calibration problem, adjustments to the scale factor
calibration imply an associated adjustment to the
current estimate for the drift rate bias vector. In
equation (2b) this adjustment is represented by the
quantity mD,. The analogous correction for the
derivation in this section, which we will here call d,,
is given by
d, = -R X {8 [*AD]} 24

which follows from equation (20) by replacing
(- Q) with d; on the left-hand-side and Q with
D, on the right-hand-side. The D, value to be

inserted into the equations is the most recent value
determined for operational use.

Equation (22) can be generalized to allow for
alighment and/or bias adjustments within the
calibration state vector. This is done by simply
combining equations (11a) and (22), with the
restriction that the summation over k exclude the
linear scale factor corrections, i.e.,

2{=-KK*Bm +R K*Rd

+R'ZK*, (R R, [*[AR1),) [8s]. (25)

with the set {9s,} restricted to nonlinear terms. The
0 subscript on X, and A4, indicates that the current
estimate for the gyro alignments is used in construc-
ting the nonlinear correction coefficients. After the
calibration set {m,d, {3s,}} has been determined,
equations (26a) - (26d) can be used to calculate Q.
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Q=(GC-D)

- R, 2 {(5,+ )" A, (GC-D)]} (26a)
G =L+mG, (26b)
D=U+mD, +d

’xoZ{asx[ﬁ.AoDo]} (26¢)
G,= X,S° (26d)

Although straightforward to use as the basis for a
least-squares algorithm (i.e., to solve for the state
vector {m,d, (3s,}} given an error set {(}),
equation (25) is somewhat unaesthetic in that it
mixes a set of parameters pertaining to the com-
bined gyro system (i.e., {m, d}) with another set
pertaining to the individual gyroscopes (i.e., {3s,}]).
For elegance in presentation and to support
engineering analysis of individual gyro behavior,
having a state vector consisting solely of specific
parameters of the individual gyros would be
desirable. Equation (25) could be so recast if we
were dealing only with sets of three gyros.
However, for gyro sets containing more than three
gyros, the parameter set {m, d} captures all of the
functionally observable information available in the
maneuver measurements. (Of course, if the full set
of gyro data is available, the data can be processed
for each combination of three gyros and the indivi-
dual gyro parameters extracted, but this defeats the
processing simplifications discussed herein.)

This point concerning observability raises a ques-
tion: for how many gyroscopes can unique scale
factor information be obtained when equation (22) is
applied together with the constraint of fixed gyro
alignments? This question may be readily answered
for the case where the state vector is restricted to
linear scale corrections, i.e., ds,. In this case, the 3s,
matrix transforms to an equivalent m matrix via

m =-R 3, A = - [A"A]"[A" &5, A) @
Both [A"A] and [A" 85, A] can be shown to be
3-by-3 symmetric matrices, implying that the
product [A"A]'[A" 85, A] is as well. The change
matrix m therefore has only six independent
clements, from which we conclude that the
techniques of this section can provide independent
scale parameter comrections for at most six gyro- .
scopes. (“At most” applies because any coaligned
gyroscopes will have degenerate corrections
irrespective of the total number).



Section 5 - Least-Squares Solution and Weight
Matrix Specification _
For completeness, we present in this section a few
points pertaining to the selection of weights to be
applied to the input measurements. As discussed in
many references on least-squares algorithms (e.g.,
Reference 4), the solution for the batch linear least-
squares problem associated with a matrix equation
H X =Y can generally be written as
X=HWH+W) (HWY+W,X,) (28
For our problem, X (the state vector) will be some
combination of m, d, and/or (8s,}, Yis [{", ... ;T
for N maneuvers, H is a matrix of state vector multi-
plying elements constructed from appropriate pieces
of equation (25), W is a 3N-by-3N weight matrix for
the error measurements (the elements of Y), and W,
is a weight matrix associated with the a priori state
vector estimate, X,. For our problem, because the
state vector consists of differential changes from the
previous best estimate, we set X, = 0. Our only
remaining concern, therefore, is to establish
reasonable estimates for W and W,.

Often it is both convenient and reasonable to simply
set Wito 1, and W, to 0. (We used this approach in
our analysis of the HST maneuver data and have
found it operationally acceptable.) Implicit in the
approach are the following five assumptions: (1) the
state vector correction terms are fairly stable over
the time period of data collection, (2) the degree of
correlation between measurement error components
is fairly small, (3) the expected error component
magnitudes are all approximately the same, (4) the
data set spans the domain of state vector sensitivity
sufficiently well that observability is not a problem,
and (5) a sufficiently extensive data set has been
accumulated that neglect of a priori information
does not undermine operations. The first three
points relate to setting W to 1., whereas the last two
relate to setting W, to 0.

If any of the conditions indicated in the previous
paragraph are significantly violated, a more
sophisticated weighting scheme is required. We
present here a method for specifying W that retains
assumption 1, eliminates assumption 3, and replaces
assumption 2 with a less restrictive one (called 2a)
that the measurement errors associated with each
maneuver are uncorrelated with those of all others.
We will not consider the possible advantages of a
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nonzero W,. Assumptions 1 and 2a allow W to be
expressed as a block diagonal matrix, with each
block being a 3-by-3 matrix, w, associated with a
specific maneuver. Given the block diagonal form,
each w can be writien as (p+p.)", where p, is the
covariance associated with reference attitude errors,
and p, is the covariance associated with random
gyro errors. The attitude covariance matrix is given
by .

D = T‘tTpi T. + p, 29)
where p, and p, are the initial and final attitude
covariance matrices in the instantaneous spacecraft
frame, and T is as used in equation (5). Refer-
ence S specifies an equation for attitude covariance
matrices such as p, and p,. This equation, which
depends upon the reference star distribution and the
measurement and catalog errors for each star, is

Pu = O L, - 2(0}/a)VV,T (30)
where 6'=[Z0,"1", o, is the root-mean-square
combined measurement and catalog error for the jth
star, V, is the jth star vector expressed in the space-
craft frame, and the sums are over all observations.
This expression can be simplified for processing
purposes in the case of observations from a number
of well-separated star sensors with fairly narrow
fields-of-view (narrow relative to the field-of-view
separations). In this case, each V, can be replaced
with the boresight direction vector for the jth sensor
expressed in spacecraft coordinates, with o, then
indicating typical error size for that sensor. This
substitution eliminates ground processing of the
reference star data.

A reasonable, albeit heuristic, model for the
covariance associated with gyro errors is
P = Lo, T +06,’6"] 31
where o, is the typical single-axis standard
deviation of the gyro drift rate bias, and ¢, is the
typical scale factor/alignment maneuver error.
Equation (31) does not attempt to model the physi-
cal mechanism that produces gyro noise, but rather
requires the user to provide parameters o, and o,
based on typical spacecraft performance.
Empirically, for the HST gyroscopes working as a
set, we find o, ~0.01 arcsecond per second and

G, ~ 0.2 arcsecond per degree.



Section 6 - HST Gyroscope Behavior

The HST gyroscope system comprises three rate
gyro assemblies (RGAs) manufactured by
AlliedSignal Government Electronic Systems. Each
RGA consists of two single-degree-of-freedom,
dual-mode, rate integrating, mechanical gyroscopes.
The high-rate mode has a range of +1800 degrees
per hour and a resolution of 7.5 milliarcseconds per
40-hertz sample; the low-rate mode has a range of
+20 degrees per hour and a resolution of
0.125 milliarcsecond per 40-hertz sample. The gyro
alignments are such that any three can be used to
completely sample rotations of the spacecraft. The
onboard system is configured to nominally use four
gyroscopes simultaneously, keeping the remaining
two as backups,

RGA units 2 and 3 (those housing gyros 3, 4, 5,
and 6) were replaced in December 1993 during the
first HST servicing mission. All six gyroscopes
were activated for the servicing mission and early
on-orbit verification and calibration phase. The
iterative calibration procedure described in
References 1 and 6 was followed until convergence
was achieved. Thereafter, the two gyros in RGA
unit 1 were deactivated, leaving HST operating with
four new, freshly calibrated gyroscopes. The active
gyros .are mounted with input-axis unit vectors of
approximately (30.586, £0.617, -0.525), with the
sign sense for the first two components being
(--, ++, -+, +-), for gyros 3, 4, 5, and 6, respectively.
The symmetry of these vectors about the yaw axis is
significant for understanding the specific mani-
festation of an observed growing scale error.

As is typical with spacecraft gyroscopes, the biases
vary fairly rapidly. For the HST gyroscopes, the
change in the drift rate bias for both high- and low-
rate modes has been found to be about 7 arcseconds
per hour per day. The temporal variation of the
high-rate mode drift bias vector (i.e., as measured in
vehicle space) has been found to track the low-rate
mode vector variations quite closely. This allowed
implementation of an operational procedure
whereby only the low-rate mode bias is measured
frequently, based on data accumulated during

science pointing with the spacecraft pointing control

system locked on fine guidance sensor guide stars.
The high-rate mode bias is then determined from the
low-rate mode bias via an additive offset, which is
monitored for constancy once every 4 to 6 weeks.
The algorithm used for monitoring the offset had
been, until recently, essentially that discussed in
Section 3 in association with equation (13). The
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spacecraft pointing control system is commanded to
place the gyroscopes in high-rate mode while
maintaining a constant attitude for approximately
one orbit (about 95 minutes). Fixed-head star
tracker star measurements are obtained at the begin-
ning and end of this constant attitude period and
used to determine the true attitude change.

In HST operations, most large maneuvers are pre-
dominantly about the yaw axis. The predominant
symptom of the scale factor problem discovered in
August 1995 was a substantially larger postslew
pointing error for negative yaw maneuvers than for
positive yaw maneuvers. Upon examining the
quantity E =(2{1/0) for maneuvers between the
time of the first servicing mission and August 1995
with 11,1> 0.9 and © > 90 degrees, we found that
although the average value of E for positive yaw
maneuvers stayed near zero, its value for negative
yaw maneuvers was fairly well fit by the curve

E~02+06(1-¢")
arcseconds per degree (32a)

T = 6 months (32b)
The sense of the error for negative yaw maneuvers
was such that the spacecraft fell short of its intended
destination. The random scatter for E is about
0.3 arcsecond per degree (30).

The analysis techniques described in this paper were
developed to study the temporal change that was
seen to have occurred in the HST RGAs. As part of
our study, we have come to realize that the effects
of gyroscope nonlinearities are as important as the
temporal changes that precipitated the study. We
applied our analysis to a combined set of
83 maneuvers collected in August 1994 and August
1995. (Our data indicate that the scale factors had
stopped changing by August 1994.) For some of our
analysis runs, we also included a 1-hour period of
constant attitude. We find that studying the fit
residuals associated with the constant attitude period
is important for constructing a high-fidelity model
of gyroscope response. The results of our analysis
are specified below.

(1) To study the change in average linear scale
relative to the original post-servicing-mission cali-
bration, we performed a fit using the high mode bias.
offset vector and gyro frame linear scale factors as
our state vector. The best fit values for this case are
given in equations (33a) and (33b).



sy = [-1.8X10%, 3.4%x10%, -7.7x10%]"
+ 1x10* arcsecond per second  (33a)

[8s,])c = [5.7x10%, 4.2x10°,

8.4x10°, 1.74x10°T +1x10°  (33b)
As will be discussed shortly, the bias offset adjust-
ment is that required to compensate for gyroscope
nonlinearities, the “true” bias at constant attitude
already having been eliminated by the standard
operational procedures. The [3s,]. elements repre-
sent the average change in the high-rate mode scale
factors. The sign sense indicates that the gyros have
become more sensitive (more counts per degree of
actual slew). The largest single change, that for
gyro 6, corresponds to an error of 56 arcseconds for
a 90-degree slew about the input axis.

(2) Because of the difference in response for
positive and negative slews, together with the fact
that the bias determination procedure had been
tuned to work accurately at zero angular rate, it
seemed likely that some scale . nonlinearity was
involved. Taking d = 0 as a constraint effectively
imposed by the operational procedures, we
investigated potential nonlinearities by solving for a
state vector consisting of {3s,]. and [3s,].. The best-
fit results in this case are

[8s,]. = [6.0x10%, 2.9x107,

1.27x10*, 1.48x10"1" + 1x10° (34a)
[3s,]c = [0.8x10%, 6.1x10°,
1.95x10*, 7.8x10°]" '+ 1x10° (34b)

Comparing the nonlinear correction values with the
average change values indicated for the first case,
we see that the error associated with not taking the
nonlinear effect into account can be as large as the
temporal change. We also determined fit param-
eters for two other cases, one including d in the state
vector and another using g,(Q) = Q’ rather than IQI.
The former showed a slight reduction in the fit
residuals, whereas the latter showed a slight increase
in the fit residuals; the changes in residuals in both
cases were insignificant.

Given our findings regarding scale factor non-
linearities, the spacecraft pointing control logic
should ideally include compensation for this effect
when estimating spacecraft angular rates. Although
the HST pointing control system does not model
scale factor nonlinearities, we can compensate to a
significant degree for the nonlinearities by allowing
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the low-to-high bias offset to absorb the average
effect of the gyroscope nonlinearities as weighted by
the actual distribution of maneuvers scheduled for
the HST mission. This is effectively what happens
with the fit procedure associated with equa-
tion (33a). The large negative third component for
the bias in equation (33a) is associated with the
positive sign of the components of [8s, ). in equa-
tion (34b), together with the fact that gyros 3 - 6 are,
on average, pointing along the negative yaw axis.
This weighting for mission maneuver distribution
will also affect the estimated average scale factors,
as can be seen by comparing equations (33b) and
(34a). Empirically, it appears that adequate HST
mission performance is achieved with this approach
during normal operations. We note, however, that
this approach does not give optimized performance
for high-rate mode, inertial hold conditions, the
implied spurious drift being about 300 arcseconds

. per hour.

Using the bias vector to absorb the average effect of
gyroscope nonlinearities weighted according to the
profile of mission maneuvers could be problematic
for spacecraft that use single-mode gyroscopes. For
such spacecraft, science operations would likely
require the bias vector to be selected so that pointing
performance is optimized with respect to constant
attitude periods. Adjusting the bias to improve
maneuver performance is therefore not an option.
Mission engineers designing the pointing control
and sensor calibration algorithms for such missions
should consider including compensation for gyro-
scope nonlinearities, particularly if slewing accura-
cies better than 1 arcsecond per degree are required.

(3) As part of our analysis of the HST gyroscope
changes, we also considered the possibility that the
changes were associated with the gyroscope
alignment matrix. We therefore performed a fit for
a scale factor /alignment correction matrix (m)
together with a bias adjustment (d) based on
equation (1la). We found that including the
alignment adjustments did not significantly improve
the residuals relative to those associated with the fit
restricted to state vector {d, [3s,].}. We specifically
found that the alignment terms did not allow us to
simultancously obtain improved residuals for the
maneuver data while maintaining small residuals for
the constant attitude data. Our results are consistent
with there being no significant change in the
gyroscope alignments during the 18 months
following the first HST servicing mission.



Conclusions

This paper has presented a number of variations on
the Davenport algorithm for gyroscope calibration
specifically designed to (1) allow analysis with a
drastically restricted quantity of telemetry data and
(2) extend the state vector domain to allow study of
both isolated and nonlinear scale factor corrections.
We have applied the techniques to data obtained
during normal operations of HST as part of a study
of temporal variations of the HST gyroscope scale
factors. We have found that the HST replacement
gyroscopes experienced significant change over the
first 6 to 8 months following the first HST servicing
mission, the largest individual change corresponding
to an error in estimated projected rate about the
input axis of about 56 arcseconds per 90 degrees.
We have found scale factor nonlinearities that, when
characterized as differences between scale factors
associated with positive and negative rotations, are
as large as 2 parts in 10000, ie., about 65 arc-
seconds per 90 degrees. For spacecraft, such as
HST, that use dual-mode gyroscopes, the effects of
the nonlinearitiecs can be accommodated to a
significant degree via adjustments to the high-rate
mode drift rate bias vector. This approach may be
inadequate for missions using single-mode gyro-
scopes. Finally, we find, to within the accuracy of
our data set, that no significant changes have
occurred to the gyroscope alignments during the
first 18 months following the servicing mission.

The work reported in this article was supported in
part by National Aeronautics and Space Adminis-
tration (NASA) contracts NAS 5-31500 and NAS
5-31000, which enable Computer Sciences
Corporation and AlliedSignal Technical Services
Corporation to provide systems engineering,
analysis, and operations support to NASA’s
Goddard Space Flight Center.

Appendix - Model Maneuver Profile

In this appendix we present the details of one fairly
common maneuver model. In addition to the total
maneuver angle, the model uses three input
parameters characterizing the spacecraft’s maneuver
execution algorithm.
selected as the maximum jerk magnitude (Ji,), the
jerk pulse duration (8), and the maximum angular
velocity magnitude (,,). The maneuver profile is
symmetric about the midtime (1/2); it is therefore
sufficient to construct the maneuver profile through
that time. Throughout the maneuver, the angle (6),
rate (), and acceleration (a) are continuous, and the
jerk (the third time derivative of 6) takes on one of

These parameters can be
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three values: J, 0, or -J. The maneuver through its
midpoint is composed of two, three, or four
segments, depending upon the value of ®. The con-
struction for each solution type is presented below.

Operationally, three auxiliary paramegers are first
calculated from the three input parameters:

€ = ®,/J,8 -0 (A.1a)
8, =2]8 (A.1b)
8, = 0, {[(,.” +3%,)/28] +1} (A.1c)

These three equations will be derived below. The
determination of whether a two-, three-, or four-
segment half-maneuver pertains depends upon
where © falls relative to ®_and ©,; a two-segment
solution pertains for © in the range [0,8,], a three-
segment solution for the range [©,,8,], and a four-
segment solution for [©,,x].

Two-segment solution

The two-segment solution assumes that the jerk is
equal to some positive value J for a time period &
and equal to -J for a subsequent equal period. The
functions a(t), «(t), and 0(t) are each required to be
continuous through the point of discontinuous jerk.
The angular velocity reaches its maximum value at
exactly the midpoint of the maneuver, jie., at
1/2=28. The solution for the two segments is
specified below.

Segment 1; 0<t<d

J = J  (J yet unknown) (A.23)
alty = Jt (A.2b)
o) = 12)¢ (A2¢)
o) = 1/6J¢ (A.2d)
Segment2: d<t<28

vy = -J (A2e)
alt) = J&-J@-9) (A.26)
o) = 12 +J8(@-9)

- 1/23(t-d) (A2g)
6 = 14618 + 1218 (t-J)

+1/2J8(-8" - 1/61(t-3)° (A2h)

The unknown J is determined by the requirement
that 6(1/2) = ©/2. Substituting t = 25 in equation
(A.2h) yields

J =

e/2% (A.21)



The two-segment solution applies until equa-
tion (A.2i) produces a value of J greater than J_.
This gives the limiting angle ©, indicated in
equation (A.1b).

Three-segment solution

For maneuvers with angle ® exceeding ©,, the two
periods of constant jerk are separated by a period of
zero jerk, of duration € (to be determined). For
convenience, let us define a time point A = &+¢.
The solution for the three segments is specified
below.

Segment 1: O0<t<§6

M =73, (A3a)
a®) = It (A.3b)
ot = 127, ¢ (A.30)
o) = 161 ¢ (A.3d)

Segment2: d<t<A

vy = 0 (A.3e)
at) = J_ 8 (A.3f)
ot) = 12,8 +1_ 8(-39) (A.3g)
o) = 1/61.8 + 121 8 (1-9)

+1/27 8 (t-8)° (A.3h)

Segment 3: A<t<A+8

Iy = -, (A.31)
ait) = J.6 - J(t-A) (A.3))
ot) = 121,88 +J,8e + I 8(t-A)

-1/2 3t - A)? (A.3K)
o = 1618 + 121 8¢ +12] 8¢

+121 8 t-A)+1 8e(t-A)
+123,8(t-AF - 1/6 1(1- AY (A3])

The unknown € is determined by the requirement
that 0(1/2) = @/2. Substituting t = A+ in equation
(A.31) yields the quadratic equation

&€ +38e-20©/0,-1) =0 (A3m)
the solution for which is
e=328{[1+89(8/6, - N]" - 1}
=128{[1+80/0]" - 3} (A3n)

The three-segment solution applies until equa-
tion (A.3k), combined with equation (A.3n), pro-
duces a value of ® greater than ,. The maximum
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permitted value of € can be found by setting (t) in
equation (A.3k) to @, at t = 28+€. This results in

o =0 /T 3-8 (A30)
Note that for the progression of solutions to be
consistent, we require @, = Jm52 The maximum
maneuver angle permitied for the three-segment

model can be found by substituting € for € in
equation (A.3m); the result is equation (A.1c).

Four-segment solution

For maneuvers with angle © exceeding ©,, the third
segment is followed by a period of constant angular
rate at the maximum permitted value. This fourth
segment lasts until the maneuver reaches the half-
way point, i.c., until 0(t) = ©/2. The result is that
the maneuver profile for the first three segments is
the same as that appropriate for a three-segment -
solution with € = ¢_,, and during the fourth segment
it is given by

® =0 (A.4a)
at) = 0 (A.4b)
o) = a, (Adc)
8 = 6,2 +a,[t- (28+¢,,)] (A4d)

The total maneuver duration in this case is
determined by the requirement that 6(1/2) = ©/2.
Thus, 1 is given in this case by

2 = (0-8)2a, + (28+,) (Ade)
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Abstract

This paper presents an algorithm for estimating the angular rate vector of a satellite which is based
on the time derivatives of vector measurements expressed in a reference and body coordinate. The
computed derivatives are fed into a special Kalman filter which yields an estimate of the spacecraft
angular velocity. The filter, named Extended Interlaced Kalman Filter (EIKF), is an extension of the
Interlaced Kalman Filter ((IKF) presented in the literature. Like the IKF, the EIKF is a suboptimal
Kalman filter which, although being linear, estimates the state of a nonlinear dynamic system. It
consists of two or three parallel Kalman filters whose individual estimates are fed to one another and
are considered as known inputs by the other parallel filter(s). The nonlinear dynamics stem from the
nonlinear differential equation that describes the rotation of a three dimensional body. Initial
results using simulated data, and real RXTE data indicate that the algorithm is efficient and robust.

L. INTRODUCTION

Small inexpensive satellites which do not carry gyroscopes on board still need to know their angular
rate vector for attitude determination and for control loop dam ping. The same necessity exists also in
gyro equipped satellites when performing high rate maneuvers whose angular rate is out of range of the
-on board gyros. While the attitude determination task requires high precision angular rate
measurements, low precision angular rate measurements are adequate for control loop damping. Satellites
usually utilize vector measurements for attitude determination. Such measurements are, for example, of
the direction of the nadir, of the sun, of the magnetic field vector, etc. The vector measurements can
be differentiated in time in order to obtain valuable information. This approach was used by Natanson2
for estimating attitude from magnetometer measurements and by Challa, Natanson, Deutschmann and Galal
to obtain attitude as well as rate.

Angular rate can be extracted from vector measurements in the following way. Let b represent a vector
measured by an attitude sensor such as Sun Sensor, Horizon Sensor, etc. For the time being let us
assume that b is the earth magnetic field vector. From the laws of dynamics it is known that
i b
b=b+w0xb )]
i b
where b is the time derivative of b as seen by an observer in inertial coordinates (i), b is the time
derivative of b as seen by an observer in body coordinates (b), and @ is the angular rate vector of
coordinate system b with respect to coordinate system i. (Note that the choice of the inertial
coordinate system as the reference coordinates is arbitrary). We can write (1) as follows '
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b i
bxlo=b-b (2.a)

where [bx] is the cross product matrix of the gneasured vector b. Note that b is computable since b is

usnally known from Almanac or a model, and b is computable from the measurements. Consequently, all
elements of (2.a) other than o are known. Let usi resolve (2.a) in the body coordinates and let us also
denote the transformation matrix from i to b by Db, then (2.a) can be written as

bxo = b - D} @)
1 .
where the dot denotes a simple time derivative. Note that b is resolved in the i coordinates and D; has

to be known. We realize that ® cannot be determined from (2.b) since [bx] is not invertible. If we add
though one more vector measurement, ¢, from an additional sensor, then @ can be determined as shown

next. Similarly to (2.b), we can write for ¢ ;

[exlo=¢-D' ¢ 3)
When we augment (2.b) and (3) into one equation we obtain
[ ] [0 b bll @
; i z y X
b - Db b b 0 -b o
b b 0 y
Sl e e | L9 @)
. z y
¢c-D'c c 0 -
b z b3
i ] -c ¢ 0]
Define ) ) } )
0 b b
; i z y
b- Db b b 0 -b o
-by bK 0
d= s (5.2) G= 0 < ¢ (5.b) ®= my 5.0
. i 4 y
¢c-D ¢ c 0 -c o
b z x z
- ¢ O
3 - %y % _
then (4) can be written as
d = Go 6)
Next, define G , the pseudo-inverse of G, as follows
A G*= G'ey'c" )
where T denotes the transpose, then ('x‘), the best estimate of @ in the least squares sense, is given by3
A #
0=Gd )

Note that this solution exists only if b and ¢ are not co-linear. An estimate of @, better than that
given in (8), can be obtained when the problem is treated as a stochastic problem and some kind of
filtering is applied to the measurements. Moreover, filtering in the sense of estimation is a must when
at each time point we have only one vector measurement. (Such case exists, for example, when we use a
Sun Sensor and some other vector measuring sensor, and the satellite happens to be in a shadowed zone).
In such case we use the vehicle dynamics for propagating the estimate of ®. As will be shown in the
ensuing, the dynamics model of a spacecraft (SC) is a non-linear model, therefore a linear Kalman
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filter (KF) is not suitable, and some kind of non-linear estimator is needed for est}mating ®. The
extended Kalman filter (EKF) is, then, the natural choice. However, Algrain and Saniie introduced the
Interlaced Kalman filter (IKF) which is a sub-optimal filter that is a combination of two linear Kalman
filters that operate simultaneously and feed one another. While the IKF of Algrain and Saniie was an
ingenious idea, they did not utilize its full power since they fed the filter with the angular rate
vector itself as measured by gyros and not with vector derivative information. Therefore they
practlcally used the IKF merely as a low pass filter and not as an estimator. This is equivalent to
using the IKF for filtering & computed in (8). In contrast to Algrain and Saniie, we use their idea to
estimate the angular rate vector directly from vector measurements and their time derivatives and are
able to obtain estimates even when we have a single measurement at each time point. We also extend
their dynamics model farther to include products of inertia. This leads to the use of two or three more
sophisticated KFs that make use of three dynamics models. We call the extended filter: Ex}ended
Interlaced Kalman Filter (EIKF). Finally, our work differs considerably from that of Natanson’, and
Challa, Natanson, Deutschmann and Galal” mainly because most of our investigation is dedicated to the
filtering stage. In the next section we develop the dynamics models which give rise to the use of the
EIKF. This leads to the development of measurement equations that correspond to the states of the
dynamic models. This is done in Section III. In Section IV we present the stochastic models which are
used by the EIKF. They are based on the dynamics and measurement models derived in Sections II and III
respectively. Then in Section V we introduce several options for implementing the EIKF followed by test
results of the EIKF which we show in Section VI. Finally, in Section VII we present our conclusions
from this work.

II. SPACECRAFT DYNAMICS

In order to apply a recursive estimator to estimate the angular rate vector of a gyro-less spacecraft
(SC), one needs tos utilize the dynamics model of the SC. The angular dynamics of an SC is given in the
following equation

Io+h+oxo+h=T )

where I is the moment of inertia matrix, ® is the angular velocity of the satellite with respect to
inertial space, h is the angular momentum of the momentum, or reaction, wheels and T is the external
torque applied to the SC. All vectors in (9) are resolved in the b system. Since I is nonsingular, we
may write (9) as

o =1 o x (o + b + I''(T-h) (10)
The inertia matrix, I, is given by6
LI,
I= -Ixy Iyy -Iyz an
S S O |

Xz yz zz
where Ixx, Iyy, and Izz are the moments of inertia about the body major axes x, y and z respectively,

and Ixy, Ixz and Iyz are the product moment of inertia terms. Using these notations, (10) can be

written as follows. Define

0 hz -hy (Iz; Iyy) Ixy -Ixz
H= -hz 0 hx‘ (12.2) I(DOJ= -Ixy (Ix; Izz) Iyz (12b)
L I I @-1)

Xz Yz Yy xx
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yz yz
— Ixz 0 -Ixz (12.¢)
-1 10
Xy xy
2
0o ®
y ¢z x
2
x=|00 (12.9) A= my (12.8)
2
ox0) ®
Xy z
then (10) can be written as
. -1 -1 -1 ' P
o= -l Hm-IImmx-IIml+I (T-h) 13)
Let
1 -1 _ .1
Fm" I 'H (14.3) Bm— -I Imm (14.b) Bmz_ -1 - (14.c)
f=1"'(T-h) (14.d)
then (13) can be written as follows
co=me+Bmx+Bm29\.+f 1s)

The latter is the desired rotational dynamics equation which expresses the time derivative of @, the
angular velocity vector of the SC with respect to inertial space, in terms of the known forcing
function, f, and @ itself. This equation is the central equation in the development of the filter. We
realize that the solution of (15) hinges on our knowledge of y and A. As will be shown later, they will
be estimated by their own estimator. Those estimators will each need a dynamics model for the the
vector it is set to estimate. The derivation of the dynamics model is presented next. First we
differentiate (12.d) to obtain the second dynamics equation

0D +00
y z Yy z
A=|00 +0o0 (16)
0O +00
Xy Xy
Let )
0 (0]
3 z -y
Fx= 0 (17.a) and BZ= (f)z 0 (ox (17.b)
0o 0,0
y X
then (16) can be written as
x=Fyx+Bo 18
y4 xx v (18)

which is the desired equation. To obtain the dynamics equation for A, we differentiate (12.€). This
yields

A=|0 20 0}|lo (19)
y y
0 0 20|
KA z

Let
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F,=0 (20.2) and B,=|0 2(i)y 0 (20.b)

- ¥ 4
then (19) can written as

A=F)+ B0 @D

Equations (15), (18) and (21) are the deterministic dynamics equations which describe the behavior in
time of @ and the products of its components. They form the foundation of the stochastic dynamics model
of the EIKF.Next we develop the measurement equations which will serve as the basis of the stochastic
measurement model used by the EIKF to update its estimates.

I, MEASUREMENT EQUATIONS
ITI.1 Raw Vector Measurements

We start by deriving the measurement equation for the primary KF whose dynamics is given in (15) and
which estimates ®. Re-write (2.b)

|
bxlo =b - D; b (2b)
Let . .
3 _ ¢ o pi 3c =
z,=b-D b (22.2) and C,= [bx] (22.b)
then (2.b) can be written as
3 3
z = C0 (22.¢)

The measurement vector szmb is a computable three dimensional vector which is data to be fed into the

EIKF part that estimates ®. We note that 3Cb is a 3x3 singular matrix. It is obvious that one of the

three equations of (23) is a ligear combination of the other two and, thus, is superfluous. Although a
white noise will be added to zZ at a later stage (see(37)) and , thus, will tumm the three equations

in (23) into independent equations, the singularity of 3Cb will be troublesome. Problems may arise in
. . Ca . _p 3~T 3 3.T 3 -1
the KF, designed to estimate ®, when computing its gain according to Km— P o Cb [ Cme Cb + Rc)] .

3C‘,P (:C: + 3Rm ]'1. The matrix 3Cme3C: is singular, and since the elements of the noise covariance

matrix, "R o ¢ rather small, the inverse yields a matrix whose elements are very large. This in tumn

yields a very inaccurate gain matrix. All that keeps the inverted matrix from being strictly singular
is the noise covariance matrix. The physical meaning of this ill-conditioned case is that the noise is
the added information which causes the dependent deterministic equations to be independent. This
information is, of course, meaningless and should not be considered. As a remedy to this
ill-conditioned case, we eliminate one of the rows of (22¢). The question is then which row to
eliminate. It is clear that the answer to this question hinges on the value of the components of "z e
Obviously, if the SC rotates fast about the body 2z axis and not at about the other two, then it
can be seen either from (2.b) or (22.a) that the third component of "z % is negligible and thus the

third row of (22.c) should be eliminated. For the sake of the ensuing presentation we will assume that
this is the case. This check, however, has to be performed before every measurement update of the
filter. Having made the latter assumption, define

59



3Z(Db1 0 b b
z = ' (23.2) and C= S (23.h)
b3

then
2= Cbm (23.¢)

Next we have to develop the measurement equation needed to estimate y and A. We can choose one of two
options which are based on entirely different approaches. According to one approach we obtajn the
needed measurements from a second differentiation of a measured direction. It is well known, and
indeed very easily shown, that, using the notation

i b

w=b (24.2) and u=b (24.0)
the following holds ;
D;w=ix+2mxu+c'oxb+mx(mxb) (25)

i
where w is resolved in the i coordinates and, as before, the dot symbolizes time differentiation
performed in the b coordinates. Let
i

3 . | L o
»zxxb- Db w-u-20Xu-0xb (26)
then (25) can be written as
3 —
zxkb' o X (@ X b) (27.3)
Let
0 b b 0 b -b
3 z y 3 X X
Mb= bz 0 bx (27.b) Nb— -by 0 -by 27.¢)
b b O b b 0
y X z z
then it can be easily verified that (27.a) can be written as
3 3 3
zx?&.b— be + Nbl. (28)

Note that like 3zm before, 3zx7\,b too is a computable vector which is data to be fed into the EIKF part

that estimates % and A. Now, the argument that led to the reduction of the expressions in (22) to the
corresponding expression in (23), holds here too. Consequently, we eliminate one row in the expressions
'gx (27). (As before, the row to be eliminated is determined by the relative size of the components of
le.b)' Assume that here too, the third raw is eliminated, then if we define

3
z 0 b b 0 -b -b
2= | Kl 5g0 N = Z Yl (29b) N * X 29.0)
who |3 4 ® v 0 » ® 1 0 -b

Y Ab,2 z x: y y

it can be easily verified that (28) can be written as

thb=’ be + ka (29.9)
If we now have a second vector measurement, say c, then we get an identical set of equations when now b
is replaced by ¢ and the subscript b is replaced by the subscript c. Explicitly, we do the following.
Define

i

z, = c- D; c (30.2) and C_= [eX] (30.b)
i b . .
m=c¢ (30c); n=c¢ (304d) zx;w= Db m-n-20xXxn-oxc (308
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c
¢c 0 <

0 ¢ ¢ 0 ¢ -
M = =y (30.9) N = x X (30.g)
. y y

then the measurement equations are
= la
Z Cco) (31.a)
= 1b
x?» M X+ N A (31.b)
From the above, the extension of the measurement equatlons in case that we have more than two vector
measurements at one time point 1s obvious. The other option for obtaining measurement equations needed
to estimate ) and A is based on (o, the EIKF-generated estimate of . We will postpone the introduction

of this option until we present the EIKF.

II1.2 Pre-Processed Vector Measurements

When we measure two different vectors at the same time point, then, as shown in (8), we have enough
equations to obtain an estimate of ® without resorting to a recursive estimator. Therefore we can,
first, compute an estimate of ® using (8), and then filter the estimate using the EIKF. As mentioned
before, this is what was basically done in [6], only that there, ® was obtained as an output of
gyroscopes rather than an analytic solution based on vector measurements. Although this approach does
not fully utilize the capabilities of a recursive estimator, for the sake of completeness, we show here
how to formulate the measurement equation in order to apply the EIKF in this case too. Re-write (8)

= G'd ®)
Let
2" G'd (32)
and let U denote the 3x3 identity matrix, then we can write (30) as
zmp= U (33)

The last equation is the measurement equation which corresponds to the dynamics equation of (15).The
measurement equation for estimating % and A can be either those presented in the preceding sub-section;
namely (29) andf/or (31.b), or they can be directly related to & computed in (8). The latter will be
explained later when we introduce the suitable EIKF.

IV. THE EIKF MODELS

The dynamics and measurement equations presented in Section II and Section I respectively, are
nominal equations. In preparing the equations for use in a filtering routine, we add to them white
noise vectors to express model uncertainties. These uncertainties stem from two sources, first, there
are modeling errors because the equations are not the exact dynamics and measurement models, and
second, in the sub-optimal filter that we will use, we will assume that y and A are constant in the
propagation time-interval that we will use to propagate the estimate of . This assumption is clearly
wrong even though it enables us to obtain satisfactory results. The importance of the white noise added
to the each dynamics equation is in its PSD matrix which we adjust by trial and error to obtain the
best filter performance. Similarly, the white noise added to each of the measurement equations
indicates the measurement accuracy expressed by the covariance matrix of the noise vectors. This
covariance too, is adjusted in order to yield the best filter performance. Adding the white noise
vector, ., to the central dynamics equation in (15), yields the following main dynamics model

o= me + Bmx + Bmk +f+ n ~(34)

Similarly we add white noise vectors to the right hand side of (18) and (21) which become
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x=Fx+Ba +n_ | () A=F,A+B,0+n

LBy +my S T W S

Adding white noise to the measurement equations turns, respectively, (23.c), (29.d) and (33) into

z =Co+v
b

@b b xAb ©p ®

37 leb= be + Nbl, LAY (38) z =U0+v 39

The extension of (37) and (38) to the case where we have more than one vector measurements is obvious.
As mentioned before, several measurement models which are based on the estimate of ®, will be
introduced when we present the EIKF in the next section.

V. THE EXTENDED INTERLACED KALMAN FILTER

Given the models of the preceding sections, we have several options for designing an EIKF. Like the
models, the EIKF itself can be divided into two basic categories. The first is one which handles raw
vector measurements, and the second category is one which handles pre-processed vector measurements. In
the ensuing we only present the models to be used in the interlaced linear KFs. The KF algorithm itself
can be found, of course, in standard KF texts.

V.1 Raw Vector Measurements
We have several options for designing an EIKF when given raw vector measurements.
The following are some options.
Option 1:
We run three parallel linear KFs. The equations of the filters are as follows,
Filter 1

The dynamics equation is derived from (34) and the measurement equation is given in (37)

. A A

= cho + Bmx + Bm)\, +f+ L (40.a)

Z = Cbm +v (40.b)

[0) b

A ,
Note that 2 and A are inputs from the other two filters that run in parallel to Filter 1.

Filter 2

The dynamics equation of the second filter is derived from (35) and the measurement equation is derived
from (38)

x=Fx+B& + 41.
x=Fx+Bo +n (41.2)
A
zx?»b- Nbl, = be + VXM (41.b)
A .
Here & and A are inputs from the other two parallel filters.
Filter 3
The dynamics equation of the third filter is derived from (36) and the measurement equation from (38)
- A
A= FA’Z. + B’Lm + 1, {42.2)
A N
zxM- be = Nbx + va 42b)

Here & and Q are inputs from the other two parallel filters. Note that the preceding’ measurement
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equations are based on a single vector measurement; namely, b. If we obtain another vector measurement,
say ¢, at a certain time point, then we use (30) and (31) to generate measurement models similar to
(40.b), (41.b) and (42.b) and perform consecutive measurement updates of the three interlaced filters,
or we can augment the two vector measurements in each filter and perform in each of them one combined
measurement update at that time point. The extension of this case to more than two simultaneous
- measurements is immediate. The three filter model of Option 1 is summarized in Table 1.

Dynamics Mea s urement
@=F o+B %+ Bmﬁ +1+n_ (40.3) 2y, = C,@+v, (40b)
i=Fx+B® +n @La)z, - N A =My + V.o G10)
A= F, A+ Bxé\a + m, (“22)|z, - bee = N b+ v, (420)

Table I: Filter Model of Option 1
A block diagram representation of the EIKF of Option 1 is depicted in Fig. 1.

KF No. 1 (yields &)
Eqs. (40.a) and (40.b)

&
&>

b —>

AA 'A\'A

4

KF No. 2 (yields %) J
Eqs. (41.a) and (41.))

Vv v

£>
x>

A
\fx ’~A
A
A
KF No. 3 (yields 1)
Eqs. (42.a) and (42.h)

V¥ ¥

e>
w
>>

Fig.1: Block Diagram of the EIKF of Option 1.
Option 2:

Here we run only two parallel interlaced linear KF. They are as follows.

Filter 1

This filter is identical to Filter 1 of the preceding option.
Filter 2

In order to present Filter 2, we adopt the following definitions

4 Fx 0
X= A (43.3) Fx= 0 F (43.b)
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B ] n
B = Bx (43.0) n = “i 43.4)

2™ 2y (44.2) c.=[M N] @ Vo =V @49
then (41.a)) and (42.2) can be augmented into the single dynamics equation
X=FX+ Bxa +n (85.2)
and (38) can be written to suit (45.a) as
z,= beX +V (45.b)

The EIKF model of Option 2 is summarized in Table II. A block diagram representation of the EIKF is
depicted in Fig. 2.

Dynamics Measurement

. A A _
o = cho + Bmx + Bmx + f+ n, (40.a) Zn= Cbm Vo (40.b)

S A
X = FXX + me + n_ (45.a)|z b beX VoL (45.b)

X

Table I: Filter Model of Option 2

b KF No. 1 (yields ) N
| Eqs. (40.a) and (40.b) ’
6] KF No. 2 (yields §, & 5 A A
b 5] Eqs. (45.a2) and (40.b)[ > X A (Aspans of x)

Fig.2: Block Diagram of the EIKF of Option2.
Option 3:

Recall that in Opuon 1, as well as in Option 2, we had to use the second time derivative of the
measured vectors in order to generate the data for the measurement models. We can use a different
approach though that does not require a second differentiation. We simply use & which is estimated in
Filter 1 and treat it in the other parallel filters as a "measurement” of % and A for they are
functions of @ (see (12.d.e)). Doing so we obtain the following measurement equations

A A

® 1 0 O o 0 v
y z Yy 2z AX
A A
0o | = 0O 1 o0 0o |+ vxy (46.a)
&6 0 0 1]|]|oow v
xy Xy y &

64



&2 1 0 0][a v,
X X X
A2 2
={0 1 O + 46.b
coy my vxy (46.b)
&’ 0 0 1|]|a v
z z Az
which we can write as
=U 4 v 47.a
zx x x (47.a)
and
z,= UA+ v, (47b)

where, as before, U is the identity matrix. We added the white noise vectors, vx and Y since on the

left hand side of the above equations we do not have ) and A, but rather their estimates. In this
Option The three parallel filters are as follows.

Filter 1

This filter is identical to Filter 1 in Option 1.

Filter 2

The dynamics equation of this filter is exactly like the one given in (4l.a), but the measurement
equation is that given in (47.a); that is,

X = E X+ Bxé\) +o (48.2)
zx= Uy + vx (48.b)
Filter 3

The dynamics equation of this filter is exactly like the one given in (42.a), but the measurement
equation is that given in (47.b); that is,

A=FA+B.&+n

A s A (42.a)
z,=U A+ Y (47.b)
The EIKF model of Option 3 is summarized in Table III.
Dynamics Measurement

. ; A A _
o= me + Bmx + Bmz, +f+ n, (40 .a) 2= Cbco Vb (40.b)
t=F x+B. 0 + 41. = + .
L xx x nx ( a) zx U ‘x vx (47.a)
. A
A= F)‘A + me + m, (42 .a) zy= U A+ 0 47.5)

Table III: Filter Model of Option 3

A block diagram representation of the EIKF of Option 3 is depicted in Fig. 3.
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KF No. 1 (yields &)
Eqs. (40.a) and (40.h)

N
e>

A
Q/\ ;'l\
A KF No. 2 (yields %) _JA
| Eqs. (41.a) and (47.b)[ %
A
A R KF No. 3 (yields A) | I)\,
| Eqs. (42.a) and (47.b)|°

Fig.3: Block Diagram of the EIKF of Option 3.
V.2 Pre-Processed Véctor Measurements

As we have already seen, pre-processed vector measurements yield an estimate of @, and as mentioned
earlier, the full advantage of a recursive estimator is not utilized when a measurement or an estimate
of w is available; however, for the sake of completeness, we present an EIKF scheme for this case too.
The filter model of this case is similar to the model of Option 3. The dynamics equation of the present
Filter 1 is identical to that of Option 3 but the measurement " equation is different. Now the
measurements that are fed mto Filter 1 are not vector measurement, but rather a preliminary estimate
of ®, which we denote by 0) thus following (8) and (32) we define

= G% (48.2)
and A
= @ 48.b
wp. “p (485)
and then, following (39), we write the measurement equation of Filter 1 as
(Dp= Ua + Vo (48.c)

As for Filters 2 and 3, while their dynamics equations e identical to those of Option 3, their
measurement equauons can be based on either the input mp (which is also the input to the present

Filter 1), or on & which is the input to Filters 2 and 3 of Option 3. The EIKF of this case is as
follows.

The EIKF for the Pre-Processed Vector Measurements:

We run three linear filters in parallel.
Filter 1

The dynamics equation is identical to that of Option 3. The measurement equation is

Z Uo+v, (48.)

Filter 2
The dynamics model is identical to that of Filter 2 of Option 3. As for the measurement model, define
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e>
e>

Py pz
z =| 0 0 49.2)
xp pPx pz
A A
O o
PX Py
then
z =Uyg+v 49.b
w T Ve (“9.0)
Filter 3
The dynamics model is identical to that of Filter 3 of Option 3. As for the measurement model, define
&
PX
z) = & (50.2)
p py
A
©
Pz
then
zxp= Uy + vlp (50.b)
The model of the EIKF for the pre-processed vector measurements is summarized in Table IV,
Dynamics Measurement
. ) A A _
m—me+Bmx+Bm2k+f+nm(40.a) zmp—Um+vm (48.¢c)
. A
=F + B 0O + 41 . =Uyx +v 490
L= 5y "y “4l.a)z) =UX+v,, (99
, A
A= Fxx + me + m, (42 .a) zkp— UA+ v;»P (50.b)

Table IV: Model of the EIKF for Pre-Processed
Vector Measurements

A block diagram representation of the latter EIKF is deplcted in Fig. 4. As mentioned earlier, here too
we have several options. We can, for example, use mp in the dynamics equation of Filters 2 and 3 in

addition to using it as measurements in these two filters,

A | KF No. 1 (yields ®)
@ | Eqs. (40.a) and (48.c) — @
Ql\ ﬁ/\
A . KF No. 2 (yields %) _)JA
» | Eqs. (41.a) and (49.b)[ %
A
A . KF No. 3 (yields A) | ﬁ
P "l Eqs. (42.a) and (50.b)]"

Fig4: Block Diagram of the EIKF for Pre-Processed Vector Measurements
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Fig. 6: Estimated RXTE Angular Velocity Components
V. FILTER TESTING

As a first step in the testing of the EIKF for estimating , we applied the filter presented as Option
1 (see Table I and Figure 1) to simulated data. After obtaining satisfactory results we applied the
filter to real data obtained from the RXTE satellite which was launched on Dec. 30, 1995, We used the
downlinked ‘magnetometer data (bi) and Sun sensor data (ci) as well as the wheel momentum data. We

applied the EIKF just before the beginning of & maneuver; namely, at 21h, 43min and 31.148sec on Jan.
4, 1996. The true rates, estimated rates, and the estimation errors are shown in Figs. 5, 6, and 7,
respectively.

V1. CONCLUSIONS

In this paper we presented an algorithm for estimating the angular velocity of a rigid body like
satellite. The algorithm is based on vector measurements and their derivatives. The algorithm is an
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extension of an estimator named, Interlaced Kalman Filter (IKF), which was introduced in the past by
Algrain and Saniie. The IKF enables the use of several linear filters running in parallel for
estimating the state of a non-linear dynamic system. In this paper we developed an IKF for a more
general dynamic model and named it Extended Interlaces Kalman Filter (EIKF). Unlike Algrain and Saniie,
we make a full use of the estimator in that we use direction vectors, rather than measured angular
velocity to obtain an estimate of the angular velocity. In this paper we presented several versions of
the EIKF for angular velocity estimation,

Simulation results indicate that the EIKF is an efficient and stable estimator of the angular velocity
vector.
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Fig. 7: Estimation Error of the RXTE Angular Velocity Components
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Abstract

In this paper, a Kalman filter formulation for attitude estimation is derived
using the Modified Rodrigues Parameters. The extended Kalman filter
uses a gyro-based model for attitude propagation. Two solutions are
developed for the sensitivity matrix in the Kalman filter. One is based upon
an additive error approach, and the other is based upon a multiplicative
error approach. It is shown that the two solutions are in fact equivalent.
The Kalman filter is then used to estimate the attitude of a simulated
spacecraft. Results indicate that the new algorithm produces accurate
attitude estimates by determining actual gyro biases.

Introduction

A widely used parameterization for attitude estimation is the quaternion representation. Advantages
of using quaternions include: 1) the kinematic equations are linear with respect to angular velocities, 2)
singularities are not present for any eigenaxis rotation, and 3) the attitude matrix is algebraic in the
quaternion components. However, since the quaternion parameterization involves the use of four
components to represent the attitude motion, the quaternion components are non-minimal (dependent).
This leads to a constraint that the quaternion must have unit norm.

The quaternion normalization constraint produces a singularity in the Kalman filter covariance matrix.
Three solutions (two of which yield identical results) to this problem are summarized by Lefferts et al.
[1]. The first approach uses the transition matrix of the state-error vector to obtain a reduced order
representation of the error covariance. The second approach deletes one of the quaternion components
in order to obtain a truncated error covariance expression. The third approach uses an incremental
quaternion error which results in a representation that is identical to the first approach. This approach is
most commonly used to maintain normalization for the estimated quaternion.

Three-dimensional parameterizations of attitude are still useful for many control applications (e.g., see
[2-3]). Since spacecraft control algorithms require estimates of attitude and/or rate, it is therefore
advantageous to develop a Kalman filter which utilizes a three-dimensional parameterization. A number
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of three-dimensional parameterizations is shown in an excellent survey by Shuster [4]; including, the
Euler angle representation, the Rodrigues parameters, and the modified Rodrigues parameters. It is
widely known that all three-dimensional parameterizations have singularities (e.g., the Rodrigues
parameters are singular for 180 degree rotations [4]). The choice of parameters depends on a number of
factors; for example, the type of rotation maneuver for the spacecraft, computational requirements,
physical representation insight, etc.

Most control applications require a parameterization that has the singularity as far from the origin as
possible. Specifically, the modified Rodrigues parameters (MRP) [5] have recently been used for
spacecraft control applications, since they allow for rotations up to 360 degrees. Tsiotras [6] utilized the
MREP to derive a new class of globally asymptotically stabilizing feedback control laws. Schaub et. al. [7]
utilized the MRP to estimate external torques by tracking a Lyapunov function. Crassidis and Markley
[8] utilized the MRP to develop a sliding mode controller for spacecraft maneuvers. However, the
aforementioned control schemes assume that the attitude (i.e., the MRP) is already known. For this
reason, a Kalman filter using the modified Rodrigues parameters is developed in this paper.

The organization of this paper proceeds as follows. First, a brief review of the quaternion and MRP
kinematic equations is shown. Then, a brief review of the Kalman filter is shown using the quaternion
representation. Next, a Kalman filter for attitude estimation is derived using the MRP. Also, the
sensitivity matrix is derived using both an additive and a multiplicative approach. Finally, the new
algorithm is used to estimate the attitude of the Tropical Rainfall Measurement Mission (TRMM)
spacecraft.

Attitude Kinematics

In this section, a brief review of the kinematic equations of motion using the modified Rodrigues
parameters is shown. This parameterization is derived by employing a stereographic projection of the
quaternions. The quaternion representation is given by

q
g= [-13} (1)
94
with
i
~. (8
93 =| 02 =_rgsm(—é-) (2a)
q3
q4 = cos(%) (2b)

A

where # is a unit vector corresponding to the axis of rotation and 0 is the angle of rotation. The

quaternion kinematic equations of motion are derived by using the spacecraft’s angular velocity (o),
given by

Qlg)g=5E(g)e ®

72



where Q(o) and Z(q) are defined as

dJox] i o

Q(Q) =] eeeenn Do (4a)
o' P 0
q4I3X3 +[213 X]

5(2) =] ceenen PR (4b)
Bt

where I, is a 3x3 identity matrix. The 3x3 dimensional matrices [@x] and [gm x] are referred to as

cross product matrices since axb=[ax]b, with

0 =-a3 ay
[ax]=l a3 0 -4 (5)
—a) aq 0

Since a three degree-of-freedom attitude system is represented by a four-dimensional vector, the
quaternions cannot be independent. This condition leads to the following normalization constraint

4" 4=4139;,+ 44 =1 (©)
The modified Rodrigues parameters are defined by [5]
4 n
p=—12-= man(g) ()
= 1+ q4 4

where p is a 3x1 vector. The kinematic equations of motion are derived by using the spacecraft’s
angular velocity (@), given by [4]

2=7}{(1—|£|2)9-29><£+2(@'£)£} ®)
where | | is the norm operator, and e is the dot product. This equation may be re-written as
2%{%(1-12@)’%+[£><]+££T}9 ©)
The measurement model is assumed to be of the form given by [4]
Bp=A(p)B; (10)

~ where B, is a 3x1 dimensional vector of some reference object (e.g., a vector to the sun or to a star, or
the Earth’s magnetic field vector) in a reference coordinate system, B, is a 3x1 dimensional vector

defining the components of the corresponding reference vector measured in the spacecraft body frame,
and A(p) is given by
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(11)

which is the 3x3 dimensional (orthogonal) attitude matrix.

Kalman Filter Development

In this section, a Kalman filter is derived for attitude estimation using the modified Rodrigues
parameters. First a brief review of basic principles of the Kalman filter using quaternions is shown (see
[1] for more details). The state error vector has seven components consisting of a four-component error
quaternion (8¢) and a three-vector gyro bias error Ab, given by

dg
The error quaternion is defined as

5q=q<§§>q“—1 (13)

where ¢ is the true quaternion and § is the estimated quaternion. Also, the operator ® refers to

quaternion multiplication (see [4] for details). Since the incremental quaternion corresponds to a small
rotation, Equation (13) can be approximated by

dg~ [—113] (14)

which reduces the four-component error quaternion into a three-component (half-angle) representation.
Equation (14) is then used to derive a quaternion based Kalman filter (see [1] for details).

The state equation for the new algorithm consists of the modified Rodrigues parameters ( 1_7) and a

£=[§J (15)

gyro bias corrections (b), given by

The true angular velocity is assumed to be modeled by
o=0-b-n (16)

~

where @ is the true angular velocity, & is the gyro-measured angular velocity, and b is the gyro drift
vector, which is modeled by

b=n, a7

The 3x1 vectors, 1, and n,, are assumed to be modeled by a Gaussian white-noise process with
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|
o

E{w(}=0 (18b)
E{w(yw” (1)} = 08(:~1) (18¢)

The true state-model equation can now be written as
p=1(b6 1) +g(pn,.1) (192)
b=n, (19b)

where

Ap.b&.1)= %{%(1 -7 p) s +[p] +££T}@. ~b) (202)
PR RV S Y

The extended Kalman filter utilizes a first-order Taylor series expansion for the state-error equation,
given by

Ak =FAx+Gw Q1)
where
af a5
dp ob
F= cen : . (223_)
O3x3 © 0343
Gn : Gpp
G=l ... 1 .. (22b)
Gy i Gy
and
dg 1/1 T T
Glﬁgﬁf‘g{;(l*z p)Ina+[px]+pp } (232)
Gy =Gp1 =033 (23b)
Gy =1I3x3 (23¢c)

The estimated state-error equation is given by
Ai=F,_;Az=FAz (242)
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AZ=x—3% (24b)

The partial derivatives in Equation (24a) for the state-error matrix are given by

2| Yoar-a e @i =
of =_l{1(1_ BT b)laxs +[pX]+ P ﬁT}Eéu (25b)
ob =3 212 == = 4 ==
where
G=6-b (26)
State-observable discrete measurements are assumed to be modeled by
2r =hy(2) +vi @7
where
ﬁk(ék) = A(£ k)ﬁ I, (28)
and v, is assumed to be modeled by a zero-mean Gaussian process with
By} =0 %9
E{v, v }=R3y (290)
The sensitivity matrix can be written as
Hy=[L i 0353] (30)

where L can be derived using an additive approach or a multiplicative approach. The additive approach
expands &, (x, ) in a power series about £, , given by

N oh
hk(lk)=h-k(§k)+—a'f'

Axy 31)

X, =%,

The brute force differentiation in Equation (31) can be shown to be given by

aa hy =———4;,—7{[£1 x]((l_ 75) I —2b ET)+22 BT 4B, pT +2(2T§1)13x3}
4 X, =% (1+é é) L
| )
e e - 271) (o200 )
(1+5" )
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which is somewhat complicated. The multiplicative approach assumes that the true parameters are given
by

p=0p®p (33)
where 8 p is the error MRP. The composition rule for the MRP leads to the following

(1-1ef e+ (1) 22l

p= (34)
el ff -2+
For small 8 p , Equation (34) can be approximated using
p=(1+28p21)|(1-18" o2 +p-25rd |
) (35)
~ é+[(1-—|p‘ )I3x3 +2[px]+ 2£!?_T]8£
From
Alp)=A3p)A(2) (36)
it follows that
_Ohl 9 5
LS s @
Ty 14
and using the fact that for small & p
A8 p) = I3 —4[3 px] (38)
Equation (37) can now be evaluated using the chain rule to yield
L= 4[A(é) B; x]{(l =T p) I3 +2[px]+2p I_‘)T}_l
U
(39)

T TR R
PP

which is in a simpler form as compared with Equation (32). In fact, these equations are identical, thereby
proving the equivalence between a multiplicative and an additive approach for the MRP in the Kalman
filter. Also, the matrix in Equation (39) has at most rank two, which reflects the fact that the observation
vector contains no information about rotations around an axis specified by that vector at each
measurement point. The extended Kalman filter equations for attitude estimation are summarized by
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i=f(%9) (402)

pP=FP+PTF+GQGT (40b)
Ei(+) =2 (-)+ Kk[.z.k —hk(ék(‘))] (40c)
Be(+) =[T6x6 — Ki Hy(££ ()] Be(-) (40d)
1
Ky = Be(-) Hf | Hy B(-) H{ +R] (40¢)
where

A G i O3
G=| -« T . 41)

O3x3 i I3x3

Spacecraft Simulation and Results

A simulation study is performed using the Tropical Rainfall Measurement Mission (TRMM)
spacecraft orbit parameters. The TRMM spacecraft (see Figure 1) is due to be launched in 1997 with a
nominal mission life of 42 months. The main objectives of this mission include: (i) to obtain multi-year
measurements of tropical and subtropical rainfall, (ii) to understand how interactions between the sea, air,
and land masses produce changes in global rainfall and climate, and (iii) to help improve the modeling of
tropical rainfall processes and their influence on global circulation. The simulated spacecraft has a near
circular orbit at 350 km. The nominal mission mode requires a rotation once per orbit (i.e., 236 deg/hr)
about the spacecraft’s y-axis while holding the remaining axis rotations near zero. The attitude sensors
used in the simulation include a three-axis magnetometer (TAM) and two digital sun sensors (DSSs).

The magnetic field reference is modeled using a 10th order International Geomagnetic Reference
Field IGRF) model. TAM sensor noise is modeled by a Gaussian white-noise process with a mean of
zero and a standard deviation of 0.5 mG. The two DSSs each have a field of view of about 50°x 50°, and
combine to provide sun measurements for about 2/3 of a complete orbit. Figure 2 shows the availability
of the sun sensor as a function of time. The DSS sensor noise is also modeled by a Gaussian white-noise
process with a mean of zero and a standard deviation of 0.05°. The gyro “measurements” are simulated
using Equations (16) and (17), with a gyro noise standard deviation of 0.062 deg/hr, a ramp noise
standard deviation of 0.235 deg/hr/hr, and an initial drift of 0.1 deg/hr on each axis.

A plot of the estimated MRP for a typical simulation run using the extended Kalman filter is shown in
Figure 3. Since, the rotation does not exceed 360° a discrete jump to the origin is not required. A plot of
the corresponding gyro-bias estimates is shown in Figure 4. Plots of the attitude covariance and gyro-
bias covariances are shown in Figures 5 and 6, respectively. The increase in the attitude covariance (at
approximately the second and fifth hour) is due to the fact that the rotation approaches 360° as shown in
Figure 7 (i.e., the fourth quaternion component is close to 1). A plot of the roll, pitch, and yaw attitude
errors is shown in Figure 8. From these figures, it is clear that the extended Kalman filter developed in
this paper is able to accurately estimate the attitude and gyro-biases of the simulated spacecraft, and
achieves the same degree of accuracy as the quaternion-based Kalman filter (see [9]).
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1 = sun available, 0 = not available
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Figure 1 TRMM Spacecraft
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Figure 2 Plot of the Sun Availability
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Kalman Filter Modified—Rodrigues Covariance
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Conclusions

In this paper, a Kalman filter was developed for attitude estimation using the modified Rodrigues
parameters. Conceptually, the computational requirements for the new algorithm are comparable to the
quaternion-based Kalman filter. However, the formulation shown in this paper avoided the normalization
constraint associated with the quaternion representation. Therefore, methods to maintain a singular
covariance matrix using the quaternion representation in the Kalman filter have been eliminated.
However, a singularity exists for 360 degree rotations. This may be avoided by allowing for a discrete
jump to the origin when the rotation approaches the singularity. Simulation results indicate that the new
algorithm was able to accurately estimate for the spacecraft attitude and the gyro-biases.
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Abstract

Toward the Complete Regulator
David Sonnabend, President

In the 1994 Symposium, I presented a new optimal observer, capable of
performance well beyond that obtainable from Kalman theory. It used a much
better performance index, and made use of all the available information on the
power spectra of the process and measurement noises. In the 1995
Symposium, my paper "Post Kalman Progress" extended these ideas to optimal
regulators; and LQG theory was completely replaced. However, it was
assumed there that the controls were computed from an exact estimate of the
current state. Here, in 1996, the loop will be closed, in that an observer
provides a noisy estimate of the state, and both sets of gains must be chosen to
deliver optimal regulator performance.

There have been casualties along the way — besides the abandonment of white
noise, and performance indices lacking engineering relevance, the range of
application of the "Separation Theorem" has been severely restricted to where
the design of the observer and regulator can no longer be completely separated;
and the "Certainty — Equivalence Principle" no longer has any validity in any
practical problem. If possible in 20 minutes, I'll sketch out the new complete
regulator theory, and indicate what still needs to be done. The paper will
conclude with a fully worked out example, showing dramatic improvements
over a corresponding design based on separated LQG and Kalman theory.
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Investigation of Models and
Estimation Techniques
for GPS Attitude
Determination

J. Garrick
NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION
GODDARD SPACE FLIGHT CENTER
Greenbelt, Maryland, USA 20771

ABSTRACT

Much work has been done in the Flight Dynamics
Analysis Branch (FDAB) in developing algorithms
to meet the new and growing field of attitude
determination using the Global Positioning System
(GPS) constellation of satellites. Flight Dynamics
has the responsibility to investigate any new
technology and incorporate the innovations in the
attitude ground support systems developed to support
future missions. The work presented here is an
investigative analysis that will produce the needed
adaptation to allow the Flight Dynamics Support
System (FDSS) to ingest GPS phase measurements
and produce observation measurements compatible
with the FDSS.

A simulator was developed to produce the necessary
measurement data to test the models developed for
the different estimation techniques used by Flight
Dynamics. This paper will give an overview of the
current modeling capabilities of the simulator,
models and algorithms for the adaptation of GPS
measurement data, and results from each of the
estimation techniques. The paper will also outline
future analysis efforts to evaluate the simulator and
models against inflight GPS measurement data. -

Background

Originally the GPS constellation was conceived to
produce accurate position information for ground, air
and space based systems. This information would be
available to anyone who possessed a GPS receiver,
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on a continuous basis. With the advance of
technology that produced low cost and lightweight
receivers, arose a new application of the GPS
constellation; attitude determination. It was
discovered that with a pair of GPS antenna a user
can determine a phase difference between like
signals of that antenna pair. This process is
commonly known as the interferometric principle,
and has been used in the Minitrack system in the
early days of space flight orbit determination.

This principle is illustrated by Figure 1 below, which
shows the relationship between wavelength (a
function of phase difference ) and the wavefront
angle.

|
antcnnd ¢

L
antcnna 1

Figure 1. Baseline phase/angle relationship

As a center of expertise for attitude determination
and calibration, the FDD began to investigate this
new technology to determine it’s capabilities. This
investigation begins with a fundamental equation
which governs the phase difference computation.
The fundamental equation can be determined from
Figure 1 and is given by:

cosa=(n+k¢p)(A/b) ( Equation 1)
where

o is the angle between the baseline and line of
sight to the GPS spacecraft

n is the integer number of cycles in the phase
difference between receivers

¢ is the decimal part of the phase difference
received from the GPS signal

k is a scale factor which depends on ¢'s units
A is the wavelength of the GPS signal ( GPS
has two frequencies,
L1 at 1575.42 MHz., and
L2 at 1227.6 MHz.
The wavelengths are
0.19042541 meters and 0.24437928 meters,

respectively )
b is the baseline length



If we were to rewrite equation 1 as

n+kd= (b/A)cosa {(Equation?2)

we can determine the integer limits for a given
baseline length. To see this let the bascline length
be 1 meter, which is what is used for all analysis
presented here. Then let oo =0 and use the L1
frequency, for which A = 0.1904 meters. Solving
this equation we get n +kd = 5.25. So we know as
the GPS spacecraft enters the field of view and
traverses from 0 to 180 degrees, then the integer
component of the phase difference, in units of
wavelengths, will range from +5 to -5.

If we again rewrite equation 1 as

o. = acos[ (n +kd)((A /b)] (Equation 3)
let $ =0, and let n range from + 5 to -5, we can
create a table of angle ranges for each integer, again

based on a 1 meter baseline. Figure 2 gives the table
of angle ranges for the 1 meter baseline.

Angular Range (deg) | Integer Part of Phase
180.00 - 162.20 -5
162.19 - 139.61 -4
139.60 - 124.84 " -3
124.83 - 112.38 -2
112.37 - 100.98 -1
100.97 - 90.01 -0
90.00 - 79.02 +0
79.01 - 67.61 1
67.60 - 55.16 2
55.15 - 40.38 3
40.37 - 17.80 4
17.79 - 0.00 5

Figure 2. Angular Range for a 1 meter baseline

From this range table we can determine how the
phase difference would look like as it ranges through
the field of view of the baseline sensor. The
measured phase difference is determined by .
comparing in the electronics the signals from both
antennae of a baseline and shifting on until both
signals are in phase. Thus the most that can be
detected is just under one wavelength difference.
This produces a plot that looks like Figure 3 for the 1
meter baseline.
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Figure 3. Phase measurement for 1 m. baseline

The lack of integer information is the well
documented problem of integer ambiguity. There
are several methods that can be used for the initial
determination of the integer values. The most
straightforward method involves a search method
over the integer values using the table in Figure 2 to
fit the visible GPS observations to the correct
integer. This can be used on the ground for off-line
processing because of the high power computers and
the fact that the process is not a real-time process.
After the initial integers are determined, then the
phase difference measurement can be monitored to
track when the integer value should change, as is
illustrated by Figure 3. Other methods will be
discussed when we talk about the extended Kalman
Filter later.

Still this is only one bit of the information needed to
compute the desired observation vector. FD ground
attitude determination software makes use of time
tagged observation vectors in BCS and reference
vectors in GCI to determine the attitude solution,
With the use of another baseline, preferably
orthogonal to the first, the line of sight vector from
the user spacecraft to a GPS space vehicle (SV) can
be determined.

Knowing this cosine of the angle and that from
another baseline, it is possible to determine the
observation vector of the visible GPS SV. The angle
determined by one of the baselines describes a cone
around the baseline vector and likewise for the
second baseline. Where the two cones intersect (see
Figure 4°) are the two possible solutions, Knowing
the normal vector to the two baseline’s plane can



reconcile which is the true solution. Paired with a
known reference vector of the GPS SV at that time,
the analyst can determine the attitude using several
well known and established attitude estimation
techniques employed within the FDOA.

Figure 4. Observation vector resolution

Figure 4 shows the geometry of the two orthogonal
baselines and the intersection of the two cones.
Using Equation 1 we can relate the direction
cosines to the phase differences as

cosa=(nj +k¢;) (Wb)  (Equation la)

cos B = (ny +kép) (Ab) ( Equation 1b)

cosy =[1-cos?x - cos2p]1/2  (Equation 4 )

These define a unit vector in the receiver coordinate
system defined by the two orthogonal receiver
baselines fixed in the spacecraft and, therefore, the
body coordinate system frame. That is

xg = [M] xg

where  Xg = [Xr ¥r Zr] transposed, the observation
vector in receiver coordinates
xp is the observation vector in BCS

[M] is the transformation matrix from the
receiver to BCS

Xp = COSOL
¥r = cosp
zy = cosy

91

Error Sources

If the integer ambiguity in Equation 1 were the only
parameter that needed to be computed, then the
matter of attitude determination would be
straightforward and no calibration would be
necessary. However, as all engineers know there is
some uncertainty in every measurement taken, and
it’s these uncertainties that need to be characterized
and/or compensated for. Figure 5 shows a graphical
representation of the difference between the observed
GPS measurement and what is the truth,

0 a
B b dL
g R SV Direction
R m
vl Tle
E R
D u
T F
H
d
Nominal 2
Baseline
vV v

Figure 5. Components of Observed and Truth

It can be seen that the true measurement is the ,
nominal quantity d, that is what you would expect if
the system were perfect, added with a quantity
associated with any misalignments. What is
observed are the additional two components, a and b.
The component a is a bias associated with the
electronics and is different for every GPS antenna. It
represents a time bias in the system. The component
b is associated with the unknown length of the
baseline. Although these two parameters can be
measured quite accurately here on the ground (self
survey mode ), when in space the thermal and other
environmental perturbations effects change the
known values. Likewise the alignment of the
sensors can be determined very accurately before
Iaunch, but the vibrations do to launch shock will
result in some displacement. This may necessitate a
postlaunch calibration to determine alignment and or
placement of each antenna. These additional
parameters change the fundamental equation

to:

cos a. = (n + k¢ + noise + line bias)(A / [M]( + db) )
(Equation 5)



In this equation only the noise cannot be determined
as a systematic error and taken out by determining
the correct compensation.

Multipath

Both solutions also lack the modeling of multipath,
which can be a large source of error. Multipath is
essentially the reflection of a GPS SV signal off a
surface on the spacecraft and received basically as an
echo of the original signal. The echo obviously has
the same identification as the original signal but has
a different phase shift of the wavelength, giving
erroneous measurements if it were not weeded out as
the false signal. Spacecraft engineers can greatly
reduce this source of error by mounting the antennas
on booms away from the main body, or flush with
spacecraft surfaces and strategically placed to reduce
signal reflection.

Prediction Utility

In order to enhance the analysis process of GPS
attitude determination algorithms and techniques for
specific missions, it was necessary to produce a tool
that would give accurate predictions for the GPS
constellation as viewed by the user spacecraft. The
utility was developed as an analysis tool on an IBM
compatible PC using Microsoft FORTRAN and
executing under the DOS operating system. The
prediction tool allows the user to input parameters to
fit the simulation. The setup used for all analysis and
predictions is:

Earth pointing mission ( +Z BCS is nadir )
Semi-major axis = 6728.83 km

Altitude = 350.8km
Eccentricity = 0.001
Inclination = 28.5deg.

RA of Asc. Node = 90.0 deg.
Mean Anomaly = 0.0 deg.
Arg. of Perigee = 0.0deg.

The boresight of each antenna point in the anti-nadir
direction, or in vector form

boresight vector=[0.0 0.0 -1.0 ] transpose, BCS
The predictions and analysis are all done at a step
size of 10 seconds and a total simulation/prediction
time of 1000 steps. This is about 1.6 orbits.

Internally the utility models the 24 GPS SV
constellation by storing their Keplerian elements and

epoch time, and using a simple two-body propagator.
The simulation produces two kinds of ouput data.
The first is a time ordered history file of GPS
spacecraft visible to the user’s antenna baseline and
the second produces a statistical analysis of the
simulation. The statistics and parameters outputted
are:

- report of simulation user supplied input

parameters selected

- Acquisition and loss of signal for each GPS SV

based on line of sight and beam width mask

- total time each GPS spacecraft is visible to the
antenna baseline

- percentage of simulation time that each GPS
spacecraft is visible to the antenna baseline

- the total number of GPS observations

- density distribution of GPS spacecraft ( count of
how many times n number of spacecraft are
visible to the antenna baseline at any simulation
step)

- maximum and minimum amount of continuous
time for each event of the density distribution
described above

- maximum and minimum continuous visibility
time for each GPS spacecraft.

The two output datasets are written to DOS ASCII
files ( alphanumeric, readable format ) and

can be edited and printed. The data can easily be
input to a plotting package for a more graphical
representation. Figures 6 and 7 give two examples
of the statistics for a half cone angle for each
antenna of 90 degrees. This showed that the
antenna baseline system would see a total of 9024
GPS observations.
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Figure 6. Distribution for half cone of 90 deg.



Density Plot of GPS Obsevations Per Step
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Figure 7. Density for half cone of 90 deg.
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Repeating this same test case setup, except we will
use only the main lobes of the antenna pattern,
which changes the half cone angle for each antenna
to be 32 degrees. Figures 8 and 9 show the same
distribution and density plots for this setup. The
total number of GPS observations in this case is
considerably less, 920 observations.
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Figure 8. Distribution for half cone of 32 deg.
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Estimation Simulator

The uncertainties in the phase measurements make it
necessary to employ estimation techniques to
determine attitude and/or each of the parameters
listed in the error budget above. To this end an
estimation simulator was developed to investigate
new algorithms, and to test the GPS attitude
determination capabilities. The simulator essentially
models a given spacecraft’s ephemeris and
dynamics, and uses the above equations to produce
the observed phase difference. The processing of
the phase difference employs a selection algorithm
and methods for resolving the integer ambiguity

( several methods have been examined for this
simulator ).

A couple of methods were used successfully, but the
method that was used for this analysis involves using
the tables of integers and angle ranges generated
earlier for a one meter baseline. The method is
simply a search through all the possible integer
values ( for a one meter baseline there are only

11, values from -5 to +5) and matching the angular
separation to within some tolerance using the
angular separation of the reference vectors after
they have been transformed to the nominal BCS
coordinate frame. This can be done at every time
point or once the initial integers are found they can
be updated by monitoring the change in phase
measurements. The first method is a good way to go
for non real-time estimation. It simply is easier to
implement. But for a real-time attitude estimation
where computer time is at a premium, it is more
efficient to initialize the integers and then monitor
for changes. Once the integer phase has been
determined it is simple to compute the observation
vectors, as defined by equations listed earlier.

The resulting observation vectors are paired with
reference vectors and form the input data for an
extended Kalman Filter and a single frame
estimator. The simulator provides a means to vary
modeling and algorithms to investigate the affect.

Figure 10 gives a plot of what the simulated true
attitude is for the test case scenario. The scenario is
an earth pointing 1 rotation per orbit (RPO)
spacecraft. The dynamics also has a small noise
characteristic which produces the small amount of
jitter in the plot. This is probably a very smooth
case as compared to actual spacecraft attitude
behavior, but it serves as a basis for further analysis.
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Figure 10. Plot of True RPY Attitude

Figure 11 illustrates what the simulator would ouput
for a GPS SV that transverses the entire angle range
from 0 to 180 degrees with the addition of attitude
errors and noise. This plot has a measurment noise
of 0.1 wavelengths or about 2 cm. It demonstrates
some things that need to be considered for when
monitoring of phase changes is used for updating the
integers. First as can be seen the phase difference
will change integer values without getting close to
1.0 or 0.0 because of the noise. This has to be
considered, as the wrong choice of the integer can
add an error as much as 18.0 degrees in the
observation vector computation, What is not seen
here but does happen is sometimes the integer
oscillates between two integers for a brief time before
moving on. This has to do with attitude motion as
much as the noise.

Actual Phase Measurements
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Figure 11. Plot of Actual Measured Phase

The estimation techniques that are used in this
paper, an extended Kalman Filter and a single frame
estimator (QUEST), will look at two cases which

9%

represents the best and worse case scenarios as far
as noise on the phase measurements. They are

the 0.1 wavelength ( 2 cm ) case and the 0.01
wavelength (0.2 cm ) case. Estimates have been
made that the measurement noise can be reduced to
about 0.5 cm. ( reference 2). Thus the use of 0.2
cm and 2.0 cm. certainly represents the best and
worse case scenarios. For both cases it is assumed
that the the location of the antennas and the time
bias have been determined so as not to affect the
solution. Both cases also use the a hemispherical
antenna pattern, which is to say a half cone of 90
degrees for the antenna field of view. In actual use
the half cone of 32 degrees may be used because of
the higher noise characteristics for observations in
the higher angle region, or the side lobes of the
antenna pattern. The affect of signal to noise ratio
on observation depending on their location in the
main or side lobes will be investigated in subsequent
analysis. The worse case scenario will use the
higher noise characteristic, but will apply it to all
observations. Thus the expected in-flight accuracy
will be somewhere between the worse and best case
scenarios.

Estimation Models

The first estimation technique is the extended
Kalman Filter. Originally a basic Kalman Filter was
used and produced good results. However after
implementing an extended Kalman Filter the results
were much improved. This simply has to do with
adding some knowledge to the system about the
expected trajectory. This additional knowledge
simply evaluates the measurement matrix and the
dynamics, or state transition, matrix based upon the
last estimate of the state. In the case of the extended
Kalman Filter the state consists of errors or deltas -
away from the a priori attitude at each step. Once an
estimate of the error at a time step is made then the
attitude error is updated based on the state deltas, the
measurement and state dynamics matrices are
recomputed using this new updated state and the
filter is reset for the next time step. The math
specifications for equations that are specific to the
extended Kalman Filter are:

AX(t) = [—%—L Ax(1) + u(t)

[z - hx",0)] = [%‘-L SAx() + v(t)



Trajectories are evaluated along current estimate of
the updated attitude error. This is found by taking
the deltas at this time step and adding them to

the previous error estimate, or

X; =X, + Ax

The reader is directed to reference 3 for a detailed
discussion on the extended Kalman filter.

Figures 12, 13 and 14 show the attitude error ( true
minus the estimated attitude ) and the statistics for
the worse case scenario. It has a lot of structure to
the plot, but a upper and lower bound is around
0.5 degrees.

Kalman Filter Trus - Estimate Emor, Rell {deg)

T-E Error, Roll {deg)

"o 20 10 911 800 1000
B Time ( x 10 ssc/step ) (sec.)
Figure 12. Roll Error for worse case

Running Mean for Roll Kalman Filter (deg)

0.04

=
8

Roll Mean (deg)
o
2

&

0.12

0.14

018y 20 w T a0 1o
Time ( x 10 sec/step ) (sec)
Figure 13. Roll running mean for worse case

Standard Deviation of KF Roll Error {deg)

0.14

Standard Deviation (deg)

4w 50
Time { x 10 sec/step) (sec)
Figure 14. Roll running std. dev. for worse case

Figures 15, 16 and 17 show the results for the best
case scenario. Figure 15 shows a bound around
0.1 degrees.
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Figure 17. Roll running std. dev. for best case

It is obvious that both show convergence. The best
interpretation for this case study is that one can
expect to achieve somewhere between 0.2 degrees
and 0.5 degrees accuracy depending on the
measurement noise and how accurately the noise is
compensated for in the filter. In both of these cases
perfect knowledge of the measurement noise
characteristics was known and compensated for in
the filter’s state measurement noise covariance
matrix.

Single Frame Estimation (QUES

The QUEST modeling likewise has demonstrated
that a less sophisticated method can still achieve
accuracies of less than one degree using GPS
measurement data.  The reader is referred to
another source ( see reference 1) for a detailed
description of the QUEST attitude determination
algorithm. Here again the method for determining
the integer ambiguity was the search method
employed by extended Kalman Filter. The
monitoring method was examined also and produced
the same results, however it was more convenient to
compute the integers again at each step and without
a timing constraint it presented no problems.

A unique problem exists for the single frame
solution that the filter does not have, simply because
it processes one observation at a time. The single
frame method, however, needs at least two
observation vectors to determine an attitude and as a
further constraint they must not be collinear. The:
best solution would be to find three observation
vectors that are orthogonal to each other, or as close
to this configuration as possible. This describes the
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geometric selection i)roblem for the single frame
solution.

Three test cases were run to demonstrate the
importance of employing a selection scheme. Figure
18 shows the results of the case where all
observation vectors were used. Figure 19 shows the
case where the first four observation vectors were
used. And Figure 20 shows the results when the
selection algorithm was employed. In all three cases
the best case scenario was used, which translates to
almost having perfect knowledge of the system.

The selection algorithm used is based on the
statement made earlier of finding three observation
vectors ( actually using the reference vectors ) that as
close as possible form an orthogonal triad. This is
simply done by looking at all combinations of three
observation vectors and use the group that has the
smallest sum of the dot products. Assuming that a
maximum of 12 observations are visible at any one
time, and choosing three at a time from this, there
are 220 groupings to search. This isn’t bad and in
fact takes very little time because of the simplicity of
the algorithm,

QUEST Solution Using Ali Observation Vectors
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Figure 18. Single Frame Error; all observations

1t’s obvious that the selection algorithm produces the
best solution, with using any four ( in this case the
first four ) being the second best method. The
reasoning behind this can be interpreted as being
over observed. That is the other observations add
more uncertainty to the estimation. The residual
spikes, at this time, have no resolution, with the data
and estimation algorithm having been verified for
correctness.
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One more case was run for the single frame
estimation method. This was using the geometry

selection algorithm, but using the worse case

scenario. Figure 21 illustrates the results.
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From this analysis of the worse case and best case,
and using a selection algorithm, the QUEST method
for attitude determination can produce an accuracy
between 0.5 and 1.0 degrees.

Future Analysis

There are many future items to be implemented and
considered connected with this analysis. They are
listed below according to function or system.

Estimation Simulator Enhancements

- Expansion of user input parameters such as:

1) allow varying of baseline length

2) allow varying placement of antennas

3) allow varying number of antennas

4) model boom and uncertainties due to

deflection of boom

5) model main and side lobes in antenna
pattern for differing noise characteristics

6) implement P-code for investigation of a
more accurate measurement

Extended KF

- extend state to include gyro and/or antenna
biases
- add misalignments to state for calibration

Single frame solutions

- continue to look at geometric considerations
and selection process
- look at REQUEST implementation

Processing of Actual Inflight GPS Data

- have acquired Crista-SPAS data
- looking to use Spartan/GADACS data

Conclusions

The Kalman Filter has demonstrated that it is
possible to get better than 0.5 degrees per axis in
determining attitude for a one meter baseline. And
likewise it is possible to get better than one degree
from a single frame attitude solution using a
geometry selection algorithm. All of these analyses
were done with a 90 degree half cone angle field of
view for each antenna, that is both main and side
lobes of the antenna pattern. Further analysis needs



to be done using only the main lobe and analysis
which uses both lobes but implements a better noise
characterization based on the angle from the antenna
boresight. And of course the processing of GPS
phase measurements from on-orbit spacecraft will be
done to validate the algorithms used so far.

The main purppose of this paper is to demonstrate
that the GPS phase measurements can be adapted to
the existing ground attitude determination software.
With the use of the cones method for resolving the
line of sight vector to the observed GPS SV and also
with new methods for the integer ambiguity
resolution it is definitely possible to use the existing
method of processing time tagged observation and
reference vector pairs.

Although the field of attitude determination using
GPS is still young, this study has shown that it is
possible to adapt the GPS measurements to the
existing design of FD ground aftitude determination
systems. Still, there is much yet to be done for
future analysis in order for GPS to be routinely
accepted as an alternative to more expensive sensor
configurations.
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ATTITUDE DRIFT ANALYSIS FOR THE
WIND AND POLAR MISSIONS

Patrick Crouse
Goddard Space Flight Center (GSFC)
Greenbelt, Maryland

Abstract

The spin axis attitude drift due to environmental torques acting on the
Global Geospace Science (GGS) Interplanetary Physics Laboratory
(WIND) and the Polar Plasma Laboratory (POLAR) and the subsequent
impact on maneuver planning strategy for each mission is investigated.
A brief overview of each mission is presented, including mission
objectives, requirements, constraints, and spacecraft design. The
environmental torques that act on the spacecraft and the relative
importance of each is addressed. Analysis results are presented that
provided the basis for recommendations made pre-launch to target the
spin axis attitude to minimize attitude trim maneuvers for both
spacecraft their respective mission lives. It is presented that attitude
drift is not the dominate factor in maintaining the pointing requirement
for each spacecraft. Further, it is presented that the WIND pointing
cannot be met past 4 months due to the Sun angle constraint, while the
POLAR initial attitude can be chosen such that attitude trim maneuvers
are not required during each 6 month viewing period.

INTRODUCTION

This paper investigates the attitude drift due to environmental disturbance torques on the Global Geospace
Science (GGS) Interplanetary Physics Laboratory (WIND) and the Polar Plasma Laboratory (POLAR)
spacecraft during routine mission conditions. Spin axis attitude drift due to environmental disturbances will
be predicted and compared against mission requirements to determine the attitude control strategy required.
A portion of this work is the compilation of several analysis memoranda prepared from November, 1991 to
January, 1996. These memoranda were prepared by Computer Sciences Corporation (CSC) under the
direction of the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center
(GSEC) Flight Dynamics Division (FDD)(References 1-5).

MISSION OVERVIEW AND SPACECRAFT DESCRIPTION

The GGS program is part of the overall International Solar Terrestrial Physics (ISTP) program which will
use multiple spacecraft in complementary orbits to assess processes in the Sun-Earth interaction chain. The
two specific objectives to be accomplished by the GGS portion are investigations of the solar. wind-
magnetosphere coupling and the global magnetosphere energy transport. These include: solar wind source
and 3-D features, global plasma storage flow and transformation, deposition of energy into the atmosphere,
and basic plasma states and characteristics. Both spacecraft have a common design heritage and have been
constructed by Lockheed Martin Corporation (formerly the Astrospace Division of General Eleciric) to be
spin stabilized cylindrical spacecraft about 2.44 meters in diameter and 1.85 meters tall. The individual
WIND and POLAR missions are presented below.
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WIND

The nominal WIND spacecraft attitude is South Ecliptic Normal, with the spin axis aligned within 1 degree
of the South Ecliptic Pole and the spin rate is 20 revolutions per minute (rpm). The Sun angle is
constrained to be 89.65 to 91 degrees, measured from the +Z-axis, due to thermal considerations. The
initial spacecraft orbit is a dayside double lunar swingby that will require about 2 years to traverse. This is
followed by an insertion into a halo orbit about the Sun-Earth libration point (L;). Orbit maneuvers will
occur at regular intervals throughout the mission. Attitude maneuvers will consist of trim maneuvers as
necessary. The WIND spacecraft, shown in Figure 1, was launched in November 1994.

Figure 1: WIND Spacecraft

POLAR

In the normal mission mode, POLAR will point its spin axis within 1 degree of = orbit normal, and will
maintain a spin rate of 10 rpm. The selection of =+ orbit normal is based on a Sun angle constraint of 90 to
160 degrees from the +Z-axis due to power and thermal needs. The nominal POLAR orbit is 1.8 X 9.0
Earth Radii (Re) with an inclination of 86 degrees. Upon reaching the mission orbit, no other orbit
maneuvers are required, however, 180 degree attitude maneuvers will be performed every 6 months in order
to maintain the Sun angle constraint. The minimization of attitude trim maneuvers between reorientation
maneuvers is desirable in order to save fuel to increase mission life. The POLAR spacecraft, shown in
Figure 2, was launched in February 1996.
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Flgure 2 POLAR Sl‘)‘:.x‘c'ecra‘ftA :

ENVIRONMENTAL TORQUES

The WIND and POLAR spacecraft main bodies are modeled as simple right circular cylinders. The booms
on WIND were also considered for their effect on the center of pressure (Reference 6). The spacecraft spin
axis (+Z-axis) is assumed to lie :along the principal axis, as does the location of the center of mass.
Therefore, there is no nutation or coning. The environmental disturbance torques considered for the
spacecraft are solar radiation pressure, Earth gravity gradient, and magnetic dipole moment,

Solar Pressure Torque

The center of pressure for a right circular cylinder is located at the volume centroid. The total force due to
solar radiation can be assumed to act at the center of pressure, which lies along the principal axis.
Therefore, the lever arm from the center of mass to the center of pressure also lies along the principal axis.
Under the assumptions stated, the solar pressure torque is always perpendicular to the spin axis, and, thus,
the spin rate is unchanged.

The force on a right circular cylinder is given in Reference 7 as:
- . 1 T ”
F = —-P({[sin B(l+ng) +—6--Cd]A1 +(1~-Cs)cos BAZ}S

4 T 1 ”
+[(--§CS sin B -—ECd)cos BA1 +2(Cg cos P +;Cd)cos ﬂA2]A)
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where:

A1 =2rh
.2
A2 =xr
P= 4.5X10"6 N/ m2 = solar mean momentum flux

= radius of the cylinder (48 inches for each spacecraft)

r
h = height of the cylinder (73 inches for each spacecraft)

~

S = unit vector from spacecraft to Sun

A= spacecraft spin axis (+Z - axis for each spacecraft)

B = Sun.angle

C; = probability that radiation is reflected specularly (16.9%)

C 4= probability that radiation is reflected diffusely (8.5%)
Ca = probability that radiation is absorbed (74.6%)

andC +C,+C =1
a d )

The above equation is good for Sun angles less than or equal to 90 degrees, but only minor changes are
required for Sun angles greater than 90 degrees. In addition, the relationship between the radiation
reflection and absorption probabilities was used to eliminate the coefficient of absorption, C,, from the
equation. The torque on the spacecraft then is :

Nsp = (ch -R,) X F
where:
I_écp - kcm = vector from the center of mass of the spacecraft to the center of pressure

Gravity Gradient Torque

The gravity gradient torque for a spacecraft, assuming that the center of mass is at the geometric center of
the body, is given in Reference 7 as:

3 .
R‘i [R x{I-R)]

s

Nge =

where:
Ry = geocentric position vector of the origin of the body reference system

I = moment of inertia tensor

For a spinning spacecraft, it is convenient to average the torque of one rotation period. Let the spin axis be
the Z-axis and the spin rate w. The body coordinate system at time ¢ can be expressed at £ = 0 as:
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X= coso)tf(o + sinmtf/o

Y = —sinwiX,, + cosry,

N
I
oN)

The unit vector R, can be written as:

R, = R%: coswr+ R’ sinot

>

, =—R%a sinot+ R’ cosot

L]

50
53 =R 53

~

~

The instantaneous gravity gradient torque is averaged over one spin period to obtain

- 1 p2n -
66, =5 by oo

substitution, then provides the spin-averaged gravity gradient torque as:

.3 L+, x s s 4
Ng = -I?”;—[Ia - (——2-1’-)](& . Z)(R, x 2)

£y

Magnetic Disturbance Torque

Magnetic disturbance torques are a result of the interaction of the residual magnetic field surrounding the
spacecraft with the geomagnetic field. As described in Reference 7, the primary sources of magnetic
disturbance torques are the spacecraft magnetic moments, eddy currents, and hysteresis. The magnetic
moment is the dominant source of magnetic disturbance torques, and it is the only one considered here. The
instantaneous magnetic disturbance torque is:

N, =mxB
where:
m = effective magnetic moment (A - m?‘)
B = geocentric magnetic flux density (Wb / m2)
EQUATIONS OF MOTION

The total disturbance torque then is the sum of the solar pressure, gravity-gradient, and magnetic moment
torques discussed above. The attitude equations of motion are simply:

dL -
:i? = Ntotal

where L is the spacecraft angular momentum vector in the inertial frame. There is assumed to be no
nutation, so the spin axis, and the angular momentum vector will remain along the Z-axis.
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RESULTS
WIND

Due to the nature of the WIND orbit, only solar pressure torques were considered. The analysis indicated
that the attitude drift would not exceed 0.8 degrees over a 180 day period. In fact, the attitude drift caused
by solar pressure only was such that the spacecraft spin axis would sweep out a path that almost closes upon
itself at the end of one year, and the angular distance from the target attitude would not exceed 1 degree.
Therefore, the 1 degree control box could be maintained without using attitude trim maneuvers by selecting
the proper initial attitude. A closer examination of the Sun angle requirement to maintain the Sun angle
between 89.65 and 91.0 degrees was then performed. A set of representative attitudes were examined for
both attitude drift and change in Sun angle over time. The change in Sun angle was found to be such that
the constraint was violated within at most 4 months, and subsequent flight data has confirmed this result.

Operationally, WIND is required to perform orbit maneuvers to maintain proper targeting to make the most
efficient use of the double lunar swingby trajectory. For efficiency of operations planning, attitude
maneuvers, if required, are designed to immediately follow the orbit maneuvers. Whenever possible, the
spin axis attitude is trimmed such that a subsequent attitude trim burn is not required prior to another orbit
maneuver. During the long phases of the outer loops of the double lunar swingby, the effect of the Sun
angle change dictates the need for attitude trims without an accompanying orbit maneuver.

POLAR

The POLAR mission has an obvious interest in fuel conservation, since the mission lifetime is dictated by
the ability to perform 180 degree attitude reorientation every 6 months. The less fuel used to maintain the 1
degree attitude pointing requirement, the longer the mission life. Since POLAR is in an Earth orbit, albeit a
highly elliptical one, gravity gradient and magnetic moment disturbance torques were considered along with

the solar pressure torque. A residual magnetic moment of 1A-m2 was used based on manufacturer
analysis (Reference 6).

The spacecraft manufacturer examined the effect of each of the disturbance torques individually, then
combined the results to form a worst case. The result of that worst case indicated that there would be cases
in 'which the spacecraft attitude constraint could not be maintained over the 6 month period between attitude
maneuvers. The FDD then analyzed the effect of the three disturbance torques acting simultaneously.
Since each torque is a function of the spacecraft attitude, any attitude changes will affect the magnitude and
direction of subsequent torques acting on the spacecraft. Therefore, the approach was expected to produce
different results than those provided by the manufacturer. The maximum attitude drift over a 6 month
period was determined to be about 0.4 degrees for the disturbance torques considered. As was the case for
WIND, the attitude control box could be maintained without attitude maneuvers when only the disturbance
torques were considered.

The requirement for POLAR is to maintain the attitude within 1 degree of the orbit normal. What if the
orbit normal is moving? The drift of the orbit normal due to orbit perturbations was examined. The
Keplerian elements and force models used to create a representative ephemeris are presented in Table 1.
The effect of orbit normal drift is illustrated in Figure 3. The orbit normal at the epoch points out of the
page at the center of the plot. The subsequent orbit normal calculated for each day of the next 6 months is
projected onto the initial orbit plane. The circle indicates a 1 degree separation from the original orbit
normal. The result determined was that the orbit normal will move about 2.0 degrees over a 6 month
period. In light of this result, the combination of orbit normal drift and attitude drift due to the application
of external disturbance torques was next examined to determine if it is possible to maintain the 1 degree
attitude constraint without performing attitude trim maneuvers between the reorientation maneuvers.,
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Table 1: POLAR Orbit Elements

Orbit Element Value
Epoch 3/21/96 11:04:42
Semimajor axis 34483.62918 kilometers
Eccentricty 0.6577685
Inclination 86.248803 degrees
Right ascension of the ascending node 3.55071 degrees
Argument of Perigee 288.89277 degrees
Mean Anomaly 221.01808 degrees
Spacecraft area 4.8 square meters
Spacecraft mass 1112.0 kilograms
Solar radiation pressure ON
Sun/Moon perturbations ON
Earth geopotential model JGM-2 4x4
2 T :
L Instantaneous orbit
| normals projected
onto a priori orbit
plane.
1t -
N
o
o Apogee
o)) 0
D
©
Orbit Normal \
-1 at3/21/96 1 degree .
-2 ) { 1 4
-2 -1 0 1 2

degrees

Figure 3: POLAR Orbit Drift from 3/21/96 through 9/21/96
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The equation of motion presented previously was integrated numerically, using the parameters presented in
Table 2, and with the initial attitude that of the orbit normal vector at time 0, 60, 70, 80, 85, 90, 95, and 100
days since epoch. Figure 4 illustrates the effect of combining the orbit normal drift with the attitude drift
due to the disturbance torques. In this case, the initial attitude is aligned with the orbit normal vector at the
beginning of the investigation.

Table 2: Input Parameters for Attitude Propagation

Parameter Value
Moments of inertia I, = 3290.988 kg-m*
I,y = 3805.400 kg-m”
I, = 5974.542 kg-m®
Spin rate 10 rpm
Spacecraft radius 1.2192 m
Spacecraft height 1.8542 m
Distance from center of mass to center of pressure -0.3048 m
Coefficient of specular reflection 16.9%
Coefficient of diffuse reflection 8.5%
Spacecraft residual magnetic dipole moment 1.0 ATM*
2 Y Y
- Initial attitude taken
L as orbit normal at 0 days
1 L. -
N
Q )
o Apogee
o 0
()
©
Orbit Normal
17 1 degree .
_2 & /] l " A 4 2 1 i A " 1
-2 -1 0 1 2
degrees

Figure 4: Attitude Drift Projected onto Instantaneous Orbit Plane
Initial Attitude is the Orbit Normal at ¢ days from Epoch
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2 e e e e B o A H s S A
L Initial attitude taken
L as orbit normal at 90 days
1F d
(7))
@ |
o Apogee
o 0
D
©
Orbit Normal
1k 1 degree b
-2 2 A i N 1
-2 -1 0 1 2

degrees

Figure 5: Attitude Drift Projected onto Instantaneous Orbit Plane
Initial Attitude is the Orbit Normal at 90 days from Epoch

As illustrated in Figure 5, by selecting the initial attitude to be aligned with the orbit normal vector at 90
days into the investigation, it is possible to maintain the 1 degree pointing requirement. In Figure 4, the
requirement was violated about midway through the investigation. Figure 6 presents the maximum
separation angles between the instantaneous orbit normal and the attitude vector over the 6 month period for
each of the cases examined. The figure indicates that for this particular period, the maximum separation
angle between the attitude vector and the orbit normal vector would occur when the initial attitude is
selected to align with the orbit normal at about 86 days from epoch.

The relative importance of the individual torques was also examined. In Figure 7, the attitude drift is
plotted for the case of the initial attitude chosen to coincide with the orbit normal vector at 90 days. The
attitude drift is calculated for the three following cases: no external torques applied, torque due to solar
radiation pressure only, and torque due to solar radiation, magnetic moment, and gravity gradient. As
expected, solar radiation pressure is the dominant environment disturbance torque, although the effect of the
orbit normal drift is the most important aspect to consider when devising a strategy to maintain the attitude
pointing constraint.
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Figure 6: Maximum Separation Angle Between Attitude and Orbit Normal
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Figure 7: Relative Effect of the Disturbance Torques
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CONCLUSIONS

The attitude drift for due to environmental disturbance torques was examined for both the WIND and
POLAR spacecraft. It was determined that the drift due to environmental disturbance torques was
sufficiently small that the pointing constraints for each mission could be met if attitude drift was the only
factor. In the case of WIND, it was discovered that the additional Sun angle constraint makes it impossible
to eliminate attitude trim maneuvers between orbit maneuvers. The maximum amount of time that can be
expected between attitude trim maneuvers is about 4 months due to the Sun angle variation over time. In
the case of POLAR, it was discovered that the drift of the location of the orbit normal itself was the major
factor to be considered in determining how to eliminate trim burns between reorientation maneuvers. It was
illustrated that the pointing constraint could be achieved, without additional trim burns required, by
selecting the initial attitude to be the location of the orbit normal vector near the center of the 6 month
period. Further, it was also illustrated that of the three disturbance torques considered, the solar radiation
pressure torque dominates the others.
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Solar and Heliospheric Observatory (SOHO)
Flight Dynamics Simulations Using MATLAB®

R. D. Headrick and J. N. Rowe
Computer Sciences Corporation (CSC)
Lanham-Seabrook, Maryland, USA 20706

Abstract

This paper describes a study to verify onboard attitude control laws in the coarse Sun-pointing (CSP) mode by
simulation and to develop procedures for operational support for the Solar and Heliospheric Observatory (SOHO)
mission. SOHO was launched on December 2, 1995, and the predictions of the simualtion were verified with the
flight data. This study used a commercial off-the-shelf (COTS) product (MATLAB®) to do the following:

» Develop procedures for computing the parasitic torques for orbit maneuvers
+ Simulate onboard attitude control of roll, pitch, and yaw during orbit maneuvers

o Develop procedures for predicting firing times or both on- and off-modulated thrusters during orbit
maneuvers

o Investigate the use of feed-forward or prebias torques to reduce the attitude hangoff during orbit
maneuvers—in particular, determine how to use the flight data to improve the feed-forward torque estimates
for use on future maneuvers.

The study verified the stability of the attitude control during orbit maneuvers and the proposed use of feed-forward
torques to compensate for the attitude hangoff. Comparison of the simulations with flight data showed that

¢ Parasitic torques provided a good estimate of the on- and off-modulation for attitude control

o Feed-forward torque compensation scheme worked well to reduce attitude hangoff during the orbit
maneuvers

The work has been extended to prototype calibration of thrusters from observed firing times and observed reaction
wheel speed changes.

This study demonstrated the use of MATLAB® simulations to support flight dynamics analysis and development of
operational procedures in the Goddard Space Flight Center (GSFC) Flight Dynamics Division (FDD).

1.0 Introduction

During orbit maneuvers, SOHO attitude control system (ACS) in the CSP mode is subject to disturbance torques
from several sources: thruster alignment, hot/cold burning of thrusters, payload movement, fuel slosh, and solar
array flexing. Analysis of the control laws by Smallwood (Reference 1) indicated an attitude hangoff because of
these disturbance torques, which could be compensated in the control loops by uplinking a feed-forward torque to
improve the pointing performance. To meet the Flight Dynamics requirement to provide inflight estimation of the
disturbance torques, prelaunch analysis (Reference 2) recommended using the average pointing errors (the
difference between the commanded and ground-computed attitude angles) during an orbit maneuver to estimate the
feed-forward torque for the next maneuver.

This paper reports work in modeling the propulsion and attitude control systems to verify this procedure through
simulation and SOHO flight experience in using it. Thruster and center of mass (CM) alignment effects were also
predicted and evaluated from a computer-assisted plant identification technique.

* This work was supported by the National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center
(GSFC), Greenbelt, Maryland, under Contract NAS 5-31500.
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2.0 Simulation

A description of the simulation models in this study and the results are given below.

2.1 Simulation Models

A key feature of the SOHO propulsion system is the coupling of the roll, pitch, and yaw control loops through

“parasitic” torques. Parasitic torques, T,

direction, applying torque about the x-axis), which also affect the other two axes. They occur because the thrusters
are not mounted along orthogonal axes. These torques cause attitude-pointing errors to grow in the control loop
until they exceed a deadband limit and a thruster fires to compensate.

are unwanted torques generated during thrusting (e.g., a delta-V in the z

The simulation was implemented using MATLAB®, a commercial software tool designed for matrix manipulation
and control law simulation. The simulation was designed with the following features and limitations:

o The thruster model of R X F torques is based on the manufacturer's values of location, direction, nominal
CM, and average beginning of life (BOL) thrust magnitude. Provision is made for easily modifying the CM
to study the sensitivity to changes that are expected with fuel usage. In addition, the user can modify the
direction and efficiency of the thrusters to adjust the model. Orbit thrusters (see Figure 1 on the next page)
are fired in couples about the primary axis. The thruster configuration is shown in Table 1.

Table 1. Definition of Cases for Orbit Thrust Simulations

Case No.* Delta-V Direction Thruster Pair Torque Axis
1 X 1/2 Y (pitch)
2 +X 3/4 Z (yaw)
3 ~Z 5/8 X (roll)
4 +Z 7/8 X (roll)

* The case number refers to British Aerospace (BAe) simulation cases (Reference 3) -

¢ Pulse-width modulation (PWM) is simulated with the onboard computer (OBC) values for minimum on
time and saturation (References 2-5). The on-modulation axis control model is shown in Figure 2 (from
Reference 3). The control loop converts torque demand to thruster on time and induces a reactive thrust
torque when the on time is above the minimum or deadband. While delta-V thrusting is active, the primary
torque axis is off modulated; that is, the thruster firing is nearly continuous during the burn while
maintaining the attitude-pointing errors within deadband limits. Off modulation rebalances the thruster
torques based on the attitude reaction by reducing the on time of one of the paired thrusters and increasing
the on time of the other. On modulation and off modulation can occur simultaneously on different axes.

¢ To model steady-state behavior, thrust level is approximated as the average during the 2-second actuation
period, ignoring details of thruster ramp up and time delays.

e The spacecraft rigid body dynamics model is given by
=N, -&xL
where [ = moment of inertia tensor
® = body rate vector
N = thruster torque vector
L = total angular momentum vector given by

Z=I(I) +Ewh

where h,, is the wheel angular momentum vector.
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Torque from solar radiation pressure (~ 10-7 Nm) is negligible compared to thrust torques. The simulation ignores
contributions from fuel sloshing, solar panel flexure, and antenna motion, because they have transient effects.
Plume impingement is not modeled.

Figure 3 is a block diagram of the model. The left half of the diagram shows the control section, with provision for
input for delta-V and feed-forward torques. The PWM block indicates deadband and saturation for thrust on each

axis. Cross-coupling is shown explicitly, where the cross-terms include the parasitic torques and the @ X L term.

The right-hand side of the block diagram shows the second order model that is symmetric for the three loops. They
are represented by the discrete time equations

X, =X +0,dt

w1 =X +x,dt

=

where the state vector X consists of the attitude angles X = (¢ © )", where ¢ =roll, © = pitch, Y = yaw,

and 56' = the rates. The control vector (3 is updated at the 2-second actuation period and includes the cross-
coupling effects. The time equations are integrated over the OBC cycle of 0.05 second.
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Figure 3. Schematic of Coupled Attitude Control Loops
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2.2 Simulation Results

Figures 4 through 6 illustrate the occurrence of pointing errors during delta-V —X thrusting (case 1). The pointing
errors arise from two sources: the effects from the parasitic torques and the offsets from a position-only controller.
The secondary axes react to parasitic torques with their on-modulated control torques when they exceed the
minimum. The simulator reproduced the general patterns of the BAe simulations (Reference 3) cases 1 through 4
for delta-V in £X and 3Z directions. (BAe’s performance analysis demonstrated the stability of the SOHO ACS
under worst-case conditions, while our purpose was to define ground support procedures for SOHO Flight
Dynamics.) Figure 7(a) shows a single-sided deadband pattern in pitch, and Figure 7(b) shows the pitch pointing
error reduction after including a feed-forward torque from the measured pointing error.

Pd

The initial estimate of the feed-forward torque, F; , was calculated from

FO =_"‘|‘Tpa

where JL is the percent on time for the off-modulated axis (nominally 75 percent), and fpo is the nominal parasitic

torque calculated from

-~

T =N,+N._

po

where N, and N_ are the torque vectors (based on location, direction, CM, thrust, and efficiency) applied in the
positive or negative sense about the control axis. For subsequent maneuvers, the attitude hangoff is evaluated and a

new value is calculated for the feed-forward torque, F . , for uplink on the next maneuver

: I:ilnew = I::0 - TD
where, for each axis,
T, =K; % rmzasi

In these equations, f‘ is the attitude hangoff, IE is the loop gain, and l_i'o is the value of feed-forward torque at

which 1_:‘ was measured.
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3.0 Fiight Experience

SOHO flight experience involving feed-forward torques and thruster alignment are described in the following
sections.

3.1 Feed-Forward Torques

This section discusses the results of the first three orbit maneuvers on SOHO in terms of attitude hangoff and the
use of feed-forward torques to compensate.

Table 2 shows a summary of the values observed on SOHO for the roll axis. The hangoffs in pitch and yaw were
£ 0.03 deg, and no attempt was made to compensate for those. The “thrusters” column in this table indicates which
thrusters were used to provide the delta-V.

Table 2. Summary of Roll Axis Feed-Forward Torques

Maneuver | Segment | Thrusters | Fo(Nm) Aﬂl;ug’zsior Frew (Nm)
MCC1 X-1 1A, 2A 0 +0.07 ~0.096 (a)
X-2 1A, 2A 0 — (b) —_
MCC2 Z-1 7A, 8A -0.096 -0.08 +0.10
Zz-2 7A, 8A +0.10 +0.03 +0.042 (c)
X-1 1A, 2A +0.10 +0.13 -0.15
HOl X-1 1A, 2A -0.16 +0.04

Notes: (a) Calculated based on a hangoff of 0.05 to be conservative
(b) Not obtained because of telemetry gap at start of maneuver
(c) Not used because the next maneuver was in the X-direction

These results are based on visual analysis of plots of the roll attitude. As the difference between the commanded
and achieved attitudes, hangoff is visible as a jump in angle at the start of a maneuver. The hangoff at the end of
the maneuver was more difficult to estimate because of control system settling (and its deadband). Figures 8 and 9
show as examples the transitions at the start and end of the midcourse correction (MCC)2 X-1 maneuver. This may
be compared with Figure 10, which shows the start of the halo orbit insertion (HOI) X-1 burn where the hangoff is
significantly smaller. The ramp in Figure 10 before the maneuver start is caused by a small residual intertial
reference unit (IRU) bias.

Comparing the MCC2 Z-1 and Z-2 burns and the MCC2 X-1 with HOI X-1 shows that the technique of uplinking
feed-forward torques does reduce the attitude errors, although because they are already small, it is not necessary for
successful execution of the maneuvers.

3.2 Thruster Alignment
Prelaunch and postlaunch thruster analysis and the thruster results are discussed in the following subsections.
3.2.1 Prelaunch Thruster Analysis

The predicted burn times of the secondary thrusters are a byproduct of the ACS simulations. As a result, this study
was extended to support prelaunch thruster analysis. In CSP mode, the momentum wheels are free running and the
attitude angles are controlled to their commanded values (usually zero). Thus, any torque applied by the primary
thruster pair (off modulated) must be compensated by firings of secondary (on-modulated) thrusters. This analysis
showed that the secondary burn times can be predicted with good accuracy from the thrust torque vectors alone.
This is an important result, because it removes reliance on the accuracy of any simulation. While these firings are a
small fraction of the main thrusts, their effects were predictable in advance and were included in delta-V targeting
for the highly successful major orbit maneuvers.
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The thruster model was evaluated from f = I-é X I; with CM at the beginning of transfer (BOT) value with solar
panels deployed, yielding the following nominal torque matrix, Tmat, for thrusters 1A-8A (in Nm):

1A 2A 3A 4A 5A 6A 7A 8A

Tx 0.0471 0.0848 0.0119  -0.0067 3.2634 -3.1015 -8.1512 3.1126
Ty 5.7332 -5.7727 0.3441 -0.2174 0.2971 0.3044 -0.3083 -0.2874
Tz 0.0616 -0.1494 -2.8434 2.8063 -0.0091 0.0001 0.0055 0.0119

For examplé, the —X orbit delta-V (case 1) uses thruster pair 1/2, with the Y (pitch) axis off modulated, yielding a
nominal parasitic torque, T,,, computed from summing the torque vectors for the firing pair

T,,=(01319 —0.0305 -00878)"

The T,,, components on the roll and yaw axes are compensated to conserve angular momentum. When the X (roll)
axis control loop accumulates a pointing error in excess of the deadband, it induces a reactive torque from its on-
modulated thruster pair (6/7 for +/- senses). Because T,,(1) is positive, it must be compensated by the negative roll
torque of magnitude 3.1015, leading to an expected value of 0.1319/3.1015 (or 4.2%) of the planned 900-second
orbit delta-V burn, or 38-second split evenly between #6 and #7. Similarly, on the Z (yaw) axis, thruster pair 4/3
has an expected value of 0.0878/2.8063 (or 3.1%) of the main burn or 27.9 second with only thruster #4 activated.
These values were verified by simulation. Because the on times grow linearly with the length of the orbit burn, they
can be scaled for different burn times.

These predicted secondary firings were compared with telemetry during MCC1, and the results are shown in
Table 3. When the burn times agreed to within a fraction of a percent, it confirmed that the maneuvers were
proceeding nominally.
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The initial thruster alighment was so accurate that no recalibration was needed; however, we had prepared a
technique to assist in thruster realignment if necessary, While the nominal T, is a predictor of off-axis firings, the
observed firing times from telemetry can be used to infer actual thrust torque values and alignment. A sensitivity
study was performed in advance to prepare for possible nonnominal conditions and to establish a baseline for their
resolution, using prelaunch values for the nominal thruster model. Nominal and perturbed thruster parameters,
efficiency, and CM were used to create the sensitivity matrix. These results were available to aid in matching
observed thruster firing times. Because the problem is underdetermined, the most sensitive parameters were
considered first.

Table 3. Predicted and Observed Thruster Firing Times From X-1 Maneuver

Thruster Number | Predicted On Time Observed On Time
1A 900 sec (nominal) 903.9111
2A 900 sec 896.0319
3A 0 0.0
4A 28 27.2743
5A 0 0.0
B6A 19 20.5540
7A 19 20.5540
8A 0 0.0

3.2.2 Postmaneuver Thruster Analysis

After several maneuvers, the secondary firings began to be predicted less well, and we adjusted the SOHO thruster
model using the principle of conservation of angular momentum. As discussed above, in CSP mode the momentum
wheels are free running and the attitude axes are controlled to zero; thus, each maneuver segment must conserve
total angular momentum. The burn times of the primary and secondary thrusters were evaluated for MCC1 and

MCC2 maneuver segments based on the change in angular momentum, dL (= T *dt), calculated from the thrust
torque mode] and the actual burn times. Any residual dL above the noise level indicates inaccuracy in the thruster
model.

The technique of plant identification was used to improve the salient parameters in the model and minimize the
error vector dL, and the validity of the resultant model was tested by application to the next maneuver (HOI). In
control theory, plant identification is the term applied to the systematic process of estimating the parameters that
control the dynamics of the system under study, in our case the SOHO ACS under thrusting. The process diagram
is presented in Figure 11. Although it could be completely automated when necessary, in the present case it was
implemented as a computer-assisted procedure with the analyst in the loop. The process was facilitated by use of
models already available for the thruster torque, sensitivity partials, and a CM model as a linear function of fuel
use between the BOT and BOL phases.

The procedure for computing the nominal angular momentum change for each maneuver segment is as follows:

e Compute the maneuver dL error vector using nominal values for the thruster/CM model, with the root-sum-
squared (RSS) dL error vector as a figure of merit.

¢ Balance the efficiency of the primary thrusters to minimize their error along the primary axis.

o Adjust other torque model parameters in the order of their sensitivity to minimize the sum of all maneuver
€ITor vectors.,
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Torque is modeled from 7-: = RX F with current values of CM and efficiency, and the change in angular
momentum dL (= T *dt) is calculated from

dL = Tonat® ton,-

where T}, is the 3x8 matrix of torques for the eight thrusters, adjusted for CM motion, and ;on, is the 8x1 vector
of thruster on times for the ith maneuver. The RSS is given by

RSS; = (dLy)? +(dlp)? +(dLs)?

and the overall figure of merit to be minimized is given by

RSS,, =) RSS,
i
Commanded
Primary Observed Burn Times
Planned AV General Burn Times . SOHO L=0
— Maneuver ————Jp| Attitude Control >
Program System
-l
Loss
Updated | Tpo
Parameter LPRED
Driver
Thruster - ,%
Model g

Figure 11. Schematic Diagram of Plant identification

3.2.3 Thruster Results

The results of thruster model tuning for MCC1 and MCC?2 are shown in Figure 12. The initial model (unshaded)
fit the ~X delta-V maneuvers well, but the Z delta-V maneuvers fit poorly; sensitivity analysis showed that these
were strongly affected by the exact model of CM, both the initial value (bias) and the motion (slope) with fuel
usage.

The results of the plant identification are as follows:

Efficiency correction to thruster 8;:  dEff(8) = —0.0148
Variation in the initial CM: dem = (0.0047, 0.0, 0.001)
Variation in slope of CM function: dcmO = 0.99

The shaded bars show a reduction in maneuver errors of about a factor of 5 with the new values in the thruster
model.
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Figure 12. Maneuver Angular Momentum Error

4.0 Conclusions
The conclusions from this study are as follows:
o The use of feed-forward torques is effective in reducing attitude hangoff in flight.

e Simulation is a valuable tool for understanding the operation of onboard attitude control systems and
preparing operational procedures.

¢ Attitude effects can provide valuable diagnostic information on the thrusters in addition to that available
from telemetry and postmaneuver orbit determination.

e COTS tools such as MATLAB® provide means for rapid implementation of computer-assisted analysis.
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ABSTRACT

Earth Observing System (EOS) spacecraft will make
measurements of the earth’s clouds, oceans,
atmosphere, land and radiation balance. These EOS
spacecraft are part of the National Acronautics and
Space Administration (NASA) Mission to Planet Earth,
and consists of several series of satellites, with each
series specializing in a particular class of observations.
This paper focuses on the EOS AM-1 spacecraft, which
is the first of three satellites constituting the EOS AM
series (morning equatorial crossing) and the initial
spacecraft of the EOS program. EOS AM-1 has a
stringent -onboard attitude knowledge requirement, of
36/41/44 arc seconds (3c) in yaw/roll/pitch,
respectively.

During normal mission operations, attitude is
determined onboard using an extended Kalman
sequential filter via measurements from two charge-
coupled device (CCD) star trackers, one Fine Sun
Sensor, and an Inertial Rate Unit. The Attitude
Determination Error Analysis System (ADEAS) was
used to model the spacecraft and mission profile, and in
a worst-case scenario with only one star tracker in
operation, the attitude uncertainty was 9.7/11.5/12.2
arc seconds (30) in yaw/roll/pitch. The quoted result
assumed the spacecraft was in nominal attitude, using
only the l-rotation per orbit (rpo) motion of the
spacecraft about the pitch axis for calibration of the
gyro biases. Deviations from the nominal attitude
would show greater attitude wuncertainties, unless

calibration maneuvers which roll and/or yaw the
spacecraft have been performed; this permits
computation of the gyro misalignments, and the
attitude knowledge requirement would remain satisfied.

INTRODUCTION
Purpose and Methodology

Attitude error analysis studies are needed to determine
whether the EOS-AM1 satellite can meet its attitude
accuracy requirements using its onboard computer and
sensor complement.

The present study determines:

1. The accuracy to which attitude sensor and gyro
calibrations can be performed.

2. The expected attitude determination error for
various sensor combinations.

The Attitude Determination Error Analysis System
(ADEAS) is an analysis software tool that provides a
general-purpose linear error analysis capability for
various spacecraft attitude geometries, sensor
complements, and determination processes. An
appropriate NAMELIST setup permits ADEAS to
model the salient features of the EOS AM-1 spacecraft
and mission profile.

* This work was supported by the National Aeronautics and Space Administration (NASA)/Goddard Space Flight
Center (GSFC), Greenbelt, Maryland, under Contract NAS 5-31500.
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Background

EOS-AM1 is the first of three satellites constituting the
EOS-AM (morning equatorial crossing) series in
support of NASA's "Mission to Planet Earth” and is the
initial spacecraft of the EOS program,

EOS-AM1 will be launched from the Western Test
Range, Vandenberg Air Force Base, California, with
the General Dynamics Atlas IIAS launch vehicle in
June 1998. EQS-AM1 has a planned mission lifetime
of 5 years.

The initial parking orbit has an altitude of 525 by 705
km with an inclination of 98.2 deg. After a series of
orbit-raising maneuvers, the mission orbit will be
described as follows:

-~ Sun-synchronous polar

— Inclination = 98.2 deg

— 10:30 am. £15 min descending node, local mean
solar time

-~ 705 km altitude, circular

~ Groundtrack repeats in 233 orbits/16 days, with
120 km cross-track error at node crossings

Spacecraft Attitude Control System

The EOS-AM1 spacecraft is being manufactured by
Lockheed-Martin, Valley Forge, Pennsylvania. The
spacecraft will have the following complement of
attitude sensor and actuator hardware:

- CCD star tracker (CCDST) (2)

— Earth scanner assembly (ESA) (2)

—  Fine sun sensor (FSS) (1)

—  Three axis magnetometer (TAM) (2)
— Coarse Sun sensor (CSS) (9 pairs)

— Inertial rate unit (IRU) (6 axes)

— Reaction wheels (4)

— Magnetic torquer rods (3)

Immediately after launch, the onboard computer, via
the attitude thrusters, uses ESA data to roll and pitch
the spacecraft to acquire the Earth and to orient the
spacecraft body Z axis to nadir-pointing, then performs
orbital gyrocompassing to align the body X axis
roughly parallel to the velocity vector. When in normal
mission mode, attitude is determined via sequential
filter using the two CCDSTs (the FSS can substitute for
one CCDST if one fails) and the IRU and is controlled
by the reaction wheels.
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The onboard computer uses an extended Kalman
sequential filter to determine attitude during normal
mission mode operations. The state vector is composed
of an attitude quaternion and the IRU rate biases. Star
observations are taken from alternate star trackers, and
a particular star is used as a valid observation only if
(1) it is in the onboard star catalog, and (2) it is visible
in two consecutive observations by the same star tracker
(16.384 sec later). The attitude propagation cycle time
is 0.512 sec, based on using filtered gyro rates (the
measured gyro data are available every 0.128 sec).

Attitude Requirements

The spacecraft attitude is described by a 3-1-2 (yaw-
roll-pitch) Euler rotation sequence, which relates the
body coordinate system (BCS) to the orbital coordinate
system (OCS). The spacecraft null attitude has the BCS
coincide with the OCS,  The OCS is a rotating
coordinate system. The OCS coordinate axes originate
in the spacecraft's center of mass. The +Z axis points
to the geocenter, the +Y axis points to the negative
orbit normal, and the +X axis completes the
orthogonal triad. The null attitude, in which the three
Euler angles are zero, has the OCS and BCS coincide.
Null attitude is the desired attitude during normal
mission mode.

The attitude knowledge requirements (the accuracy of
the attitude determination) during normal mission
mode are specified to be:

—~ 41 arc seconds in roll (30)
~ 36 arc sec in yaw (3a)
— 44 arc sec in pitch (30)

Sources of Attitude Error

When EOS-AM1 is in normal mission mode, the
following quantities influence the sequential filter
attitude error:

e IRU (ak.a. gyros)
~  Rate bias errors (deg/sec)
—  Scale factor errors (dimensionless)
— Alignment errors (deg)
- Gyro noise such as
a) Inverse gyro bias noise time
(1/sec)
b) Attitude error vector noise
(deg/sec'®)
¢) Gyro bias noise (deg/sec*?)



e CCDSTs
—  Alignment errors (deg)
-~ Measurement noise (deg)
~  Field of view errors

— Alignment errors (deg)
— Measurement noise (deg)
- Field of view errors

e Kalman filter tuning parameters. Same units as:
- Attitude error vector noise (deg/sec'’?)
~  Gyro bias noise (deg/sec’?)

THE ADEAS MODEL
What ADEAS Can Do

ADEAS is capable of modeling, on option, either the
batch weighted least-squares filter or the sequential
filter with Kalman gain. The latter mode is chosen for
the analyses presented here. The various gyro noise
parameters, CCDST and FSS measurement noises, and
Kalman filter tuning parameters are user-input and are
held constant for each run of ADEAS. The attitude
determination uncertainty is always solved for, an
initial (a priori) attitude uncertainty is specified at the
beginning of the run and is usually chosen to be large
to permit the filter to properly converge by avoiding
numerical instabilities.

The IRU rate bias, scale factor and alignment errors,
CCDST alignment and field-of-view (FOV) errors, and
FSS alignment and FOV errors, can either be held at
constant value (i.e., not solved for) or solved for, given
a set of a priori starting values. Quantities referred to
as "consider" parameters are held at constant value; the
term "perfect" is sometimes used in this paper to denote
a consider parameter with a value of zero (no error).
Conversely, ‘Solve-for” parameters evolve with time (as
more measurements are made) and use the a priori
values as initial estimates for the parameters.

This report is primarily concerned with evaluating the
influence of IRU biases and scale factors and IRU,
CCDST and FSS misalignments on the attitude
uncertainty. The CCDST and FSS FOV errors are
"perfect." (FOV errors are errors resulting from
component alignments within the sensor, optical
distortions, and manufacturing aberrations.)
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Orbit Model Used

For purposes of internal propagation, the model orbit
has the following Keplerian orbital elements, which
satisfy a 10:30 a.m. mean local time descending node
(Reference 1):

Epoch 980630.040000
Semimajor axis 7083.14 km
Eccentricity 0.0001
Inclination 98.2 deg
Right ascension

of ascending node 255.356 deg
Argument of perigee 90.0 deg
Mean anomaly 270.0 deg

All orbit perturbative forces that can be modeled by
ADEAS are enabled. These forces include the Earth
oblateness J2 effect, solar and lunar point mass
perturbations, and atmospheric drag with a spacecraft
ballistic coefficient of 2.2.

Star Catalog Used

A prototype spectral response curve (color index) for
the Ball CT-601 solid state star tracker was obtained
from the Submillimeter Wave Astronomy Satellite
(SWAS) project. This curve is necessary to convert star
catalog visual (V) magnitudes into instrumental (I)
magnitudes.

The prototype SWAS spectral response curve is
V = Iswas = 0.0043S> — 0001552 + 0.0214S - 0.1733

where S is the spectral index. For the Sun, a spectral
class G2 star, S is equal t0 4.2.

The source catalog for creating the prototype EOS run
catalog is the SKYMAP Master Catalog version 3.7, a
sequential file that contains approximately 248,000
stars. The SKYMAP library routine CAT then uses the
prototype SWAS spectral response curve to convert V-
magnitudes into I-magnitudes. It then assembles an
EOS specific intermediate run catalog in a direct-access
format containing stars brighter than I-magnitude 9.
Intermediate catalogs are created taking into account
the following criteria for each star:

— Limited to I magnitudes ranging from 2 to 6
— Excludes stars with V-magnitude uncertainties
greater than 0.1



— Excludes variable stars
amplitudes greater than 0.1

~ [Excludes multiple star systems with the two
brightest components having V-magnitude
differences less than 5.0

— Excludes stars with proper motions greater than
0.7 arc sec per year

— Excludes stars with position uncertainties greater
than 3.0 arc sec )

— Uses near neighbor checks such that no star is
within 0.25 degree and is within 3 I-magnitudes of
the candidate star

with V-magnitude

The final sequential catalog contains 2197 stars in an
ASCII-readable format. Another catalog was then
produced in direct-access MMS star record format by
using the SKYMAP Library routine CAT with the
ASCII catalog as input. This direct access catalog is the
file that is actually used by ADEAS for EOS-AMI1
attitude error analysis studies. Further details on the
creation of this catalog, and its comparison to the EOS
star catalog created in 1990 by General Electric, can be
found in Reference 2.

Alignment Angles

Reference 3 is the primary source of sensor parameters
presented here. Reference 4 only slightly modifies the
FSS performance requirements into a form that is
identical to those for the Upper Atmosphere Research
Satellite (UARS) (Reference 5).

All sensor boresights point in the +Z direction for each

Charge-Coupled Device Star Trackers

The two Ball CT-601 CCDSTs are mounted
symmetrically about the BCS Y-Z plane, such that a
star that appears in the FOV of CCDST1 will, in the
normal mode of the attitude control system, appear in
the FOV of CCDST?2 after about one-third of an orbit.

Each of the CCDSTs has an 8-deg by 8-deg FOV, is
sensitive to stars with I-magnitudes from +2.0 to +5.7,
and can track five stars simultaneously. The major
constraint to tracking to specification for these
CCDSTs is that all stars within a 0.25 deg radius of a
catalog star need to be at least 3 magnitudes dimmer.
The CCDSTs are unreliable for the Sun within 45 deg
of the CCDST boresight, or for the Moon within 17 deg
of the boresight.

Current understanding of the CCDST has it raster scan
from "top" to "bottom" until the first five guide stars
are encountered. This approach differs from the two
ADEAS CCD options: (1) choosing the five brightest
stars in the FOV and (2) performing a spiral scan about
the boresight until five stars are encountered. Since 4-
pi steradians equais 41252.9 deg., the sky is covered by
645 CCD FOVs, for an average of 3.4 stars if the
prototype EOS catalog with 2197 stars is used; so on
average the chosen ADEAS option is unimportant, and
option 1 is used arbitrarily. Table 3 has the required
CCDST performance.

Table 3. CCDST Performance Values

respective sensor coordinate system. Euler rotations in Mfgnoit:de Mfgnét;:de
the 3-1-3 sequence transform from the BCS coordinates +4 0° +5 7°
into each sensor coordinate system. Table 1 shows the Position Accuracy - -
rotation angles and Table 2 shows boresight unit 35 w.rt 10 arcsec | 16 arc sec
vectors expressed in BCS coordinates. mounting
Magnitude
Table 1. Sensor Euler Rotation Angles Accuracy 0.25 0.5
30
Sensor 1st 2nd 3rd Noise Equivalent
Rotation Rotation Rotation Angle (NEA) 3.0arcsec | 5.0 arc sec
Zp axis Xg axis Zp- axis 1o
CCDST 1 -44.0 -112.5 0.0
CCDST 2 44.0 -112.5 0.0 Here it is assumed that the position accuracy and NEA
FSs 134200 -149.3 0.0 are on a per axis basis. The star catalog position

Table 2. Sensor Boresight Vectors (BCS)

| Sensor X Y Z
CCDST 1 0.6418 0.6646 -0.3827
CCDST 2 | -0.6418 0.6646 -0.3827

FSS -0.3651 -0.3563 | -0.8601
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uncertainty (Reference 6, per axis, 3¢) is taken to be 3
arc sec.

One ADEAS input is the standard deviation of
measurement noise, which is computed for dim and
bright stars, depending on whether a star is less than or



greater than I-magnitude 4 in brightness. The standard
deviation of measurement noise is calculated by taking
the star tracker position accuracy, noise equivalent
angle, and star catalog position accuracy in quadrature.

Standard deviation of measurement noise
(bright stars, 30)

=[10% + (3 x 3)2 + 342 =13.78 arc sec
=6.683 x 107 rad

Standard deviation of measurement noise
(dim stars, 30)

=[16* + (3 x 5)% + 342 =22.14 arc sec
=1.073 x 10* rad

The 3o alignment uncertainty, per axis, is 0.05 deg.
Fine Sun Sensor

The Adcole FSS (Model 42050 sensor and Model
42070 electronics) is composed of two orthogonally
mounted single-axis Sun sensors. Each single-axis Sun
sensor consists of two reticles: a fine reticle and a
coarse reticle. The coarse reticle pattern is gray-coded
and encodes the coarse angle over the entire FOV. The
fine reticle patterns and the resultant photocell currents
are used to generate fine-angle data. The overall FOV
is 64 deg square. The output resolution is 14 arc sec
per least significant bit. The overall accuracy for a 32-
deg half-cone is 60 arc sec, and the accuracy between
the half-cone of 32 deg and the FOV of +32 deg is 120
arc sec.

As the above description also applies to the UARS FSS,
we may extract the standard deviation of measurement
noise from Reference 5, which gives the value 75 arc
sec or 0.02083 deg for 30 uncertainty. = The 3¢
alignment uncertainty, per axis, is 0.05 deg.

Inertial Rate Unit

The Kearfott IRU is composed of three independent

channels, each channel having one two-axis gyro and

associated electronics. Under command, the IRU is

sensitive to either of two rate ranges:

~ Low Rate: +£0.11 deg/sec maximum rate, with a
scale factor of 0.05 arc sec/pulse for incremental
output

- High Rate: £2.0 deg/sec maximum rate, with a
scale factor of 0.8 arc sec/pulse for incremental
output

129

The analog rate output range is £2.0 deg/sec.
ADEAS does not model low or high IRU rates, or the
analog output, since ADEAS uses engineering units
internally, rather than counts or pulses.

The following 3o uncertainties are allocated per axis:

= Noise (white) 0.0001 deg/sec'”
- Noise (drift) 0.00138 deg/hr*?
= 6.3889x 10 deg/ sec*?
- Alignment 0.1 deg
- Bias 2.0 deg/hr

=5.5555 x 10" deg/sec

From Reference 5, the 3o uncertainty in the standard
deviation of the scale factor, per axis, is 1.4 x 107°
(UARS value). The inverse gyro bias noise time
constant is assumed to be 0.0, an appropriate value for
white noise.

Kalman Filter Parameters

The Kalman filter parameters were chosen to have the
same values as the attitude error vector noise (white
noise) and gyro bias noise (drift noise) tabulated for the
IRU above. No attempt was made in this analysis to
tune these parameters for optimum convergence.

ESTIMATED SENSOR UNCERTAINTIES
Methodology

Numerous runs of duration 6000 sec (slightly longer
than one orbital period) were performed, with CCDST
and FSS sensor data simulated at 10-sec intervals.
Various combinations of solve-for and consider sensor
parameters were used, with a priori and consider values
taken from the prelaunch errors of Table 4 below.
CCDST1 was assumed to be "perfect" and was
therefore the reference coordinate system for the
calibrations. The initial attitude uncertainty was set to
999.0 deg to ensure that the starting attitude knowledge
was unknown.

Throughout this section and the next, two systems of
units are used, the ADEAS inputs/outputs (in degrees
and degrees per second) and units more suitable for
interpretation and comparison with  mission
requirements (arc seconds and arc seconds per hour).



Table 4. Prelaunch Uncertainties (30)
Sensor Quantity Value Equivalent
Value
Inertial Rate Biases | 5.555E-4 7200
Reference deg/sec | arc sec/hr
Unit
(IRU) Scale Factor 1.4E5 n/a
Misalignment | 0.1deg | 360 arc sec
CCD Star
Trackers | Misalignment | 0.05deg | 180 arc sec
(CCDST)
Fine Sun
Sensor Misalignment | 0.05deg | 180arc sec
(FSS)

Calibration results for CCDST2 and the FSS did not
improve (results were much larger than the prelaunch
values, by up to a factor of 3), and the attitude
uncertainties would not shrink below about 0.3 deg,
unless IRU rate biases were solved-for simultaneously.
This empirical observation makes sense. During
periods when no sensor data are available, the attitude
is propagated using the IRU bias, the fixed bias
uncertainty, and noise. When the CCDST2 and FSS do
have data, their observation vectors conflict with that
expected from the dynamically modeled attitude, and
the CCDST2/FSS alignment errors grow to
compensate. The necessity to continually solve for IRU
biases was independent of the size of the bias
uncertainties when specified as consider parameters, as
the computed CCDST2/FSS alignment errors remained
large, as did the attitude uncertainties.

Attempting to solve for all parameters at once took an
inordinate amount of time, and the IRU scale factor
uncertainties did not change at all. Thus, calibration
runs solved for IRU rate bias errors and IRU, CCDST2,
and FSS alignment errors.

Calibration runs were performed for 14 different
attitude maneuver scenarios. Table 5 below lists the
details of three schemes. Maneuver 1 is the nadir-
pointing 1 rpo case, which is the nominal attitude
profile. Maneuver 2 is a 5 deg roll offset from
nominal, not unlike what UARS used for its on-orbit
calibration. Maneuver 3 is a £20 deg roll offset version
of Maneuver 2. The table indicates the attitude angles
and rates at the beginning and end of the run, along
with times at which new attitude rates are commanded
and the attitude offsets at those times.
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Table 5. Attitude Maneuver Profiles

Maneuver# | Timet Roli Roll

and into run rate
Description (sec) (deg) | (deg/sec)

Maneuver 1 0 0.0 0.0

(1rpo) 6000 0.0 0.0

Maneuver 2 0 0.0 0.0
(£5 deg roll) 1800 0.0 8.33E-3
2400 5.0 -8.33E-3
3600 -5.0 8.33E-3

4200 0.0 .0

6000 0.0 0.0

Maneuver 3 0 0.0 0.0
(20 deg 1800 0.0 3.33e-2
roll) 2400 20.0 | -3.33E-2
3600 -20.0 | 3.33E-2

4200 0.0 0.0

6000 0.0 0.0

CCDST and FSS Alignment Uncertainties

The computed results for CCDST2 uncertainties were
independent of the maneuver scheme used, as one
would expect. FSS uncertainties did vary between
maneuver schemes, but this variation can be attributed
to differing periods of Sun visibility (23 minutes for
Maneuvers 1 and 2 and 20 minutes for Maneuver 3), so
differing amounts of data were available for calibration.
For example, the FSS uncertainties from Maneuver 3
were 20 percent larger than for Case 1 of Table 6.

The results presented in Table 6 were all derived from
Maneuver 1, a nominal pointing scenario. Case 2 is
identical to Case 1, except that it is a 12,000-sec run.
Case 3 used the results of Case 1 as a priori
uncertainties, which illustrates that repeated sensor
alignment calibrations will result in smaller alignment
uncertainties. Thus, longer spans of data, and accurate
estimates of alignments after a calibration run, will
result in subsequent calibration runs having smaller
uncertainties. In principle, with sufficiently long runs,
these misalignment errors can be made arbitrarily
small. However, the overall sensor uncertainty will not
necessarily behave similarly, since the sensor
measurement noises become the dominant effect. The
prelaunch alignment uncertainties are shown in Table 6
for comparison.

The X, Y, and Z components of CCDST2 and FSS
alignment uncertainties need to be interpreted carefully,
as they represent uncertainties in rotation angles about
the nominally aligned sensor coordinate system for
each sensor, with Z being the boresight vector.



Table 6. Alignment Uncertainties (arc sec, 3o)

Case and CCDST2 FSS
Description (arc sec, 3o) (arc sec, 30)
X Y Z X Y Z
Prelaunch | 180 | 180 | 180 | 180 | 180 | 180
Case 1:
1 orbit 104 ] 40 | 115 ] 6.1 | 126 | 148
Case 2:
2 orbits 72 1281 79 43 9.0 | 104
Case 3:
use case 1 54 | 21 7.9 43 72 | 104
as a priori

IRU Alignment and Rate Bias Uncertainties

Table 7 is a comparison of the prelaunch IRU rate bias
uncertainties and the IRU misalignment uncertainties
with the uncertainties computed for the three attitude
maneuver calibration schemes of Table 5.

Table 7. IRU Rate Bias and Alignment
Uncertainties

Maneuver IRU Rate Bias IRU Alignment
Scheme Uncertainty Uncertainty
and (arc sec/hr, 3c) (arc sec, 3o)
Description
X Y 4 X Y Z
Prelaunch 7200 | 7200 | 7200 | 360 | 360 | 360
No. 1 1296 21 1296 | 353 | 360 | 353
{1 rpo)
No.2 233 21 518 | 137 | S4 61
5 deg roll
No.3 58 21 143 36 15 15
120 deg roll

From Table 7 we can draw the following conclusions:

1. The IRU misalignment errors cannot be improved
unless maneuvers that deviate from nominal attitude
(scheme No. 1)are performed.

2. Larger calibration maneuvers result in smaller IRU
alignment uncertainties.

3. Larger calibration maneuvers result in smaller IRU
X- and Z-axis rate bias uncertainties.

. The IRU Y-axis rate bias uncertainty is unaffected
by the magnitude of the calibration manecuver.
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The latter conclusion is explained by mancuvers
decreasing the magnitude of the Y-axis angular rate,
whereas an increase in the rate would be required to
reduce the rate bias uncertainty.

ESTIMATED ATTITUDE UNCERTAINTIES
Results Using Prelaunch Alignment Uncertainties

Attitude was solved-for using various combinations of
prelaunch consider values and "perfect” values for the
attitude sensors and IRU parameters. This was done to
gain some appreciation of which consider parameters
had the most impact upon the computed attitude
uncertainty. Table 8 indicates that prelaunch consider
values for the IRU biases are the greatest single
contributor, followed by the CCDSTs and FSS, the IRU
misalignments, and, finally, the IRU scale factors,
which had an 8 arc sec level of uncertainty.

Table 8. Attitude Errors With Prelaunch
Uncertainties (IRU Bias not Solved For)

Solve-for Prelaunch “Perfect” Attitude
Parameters Consider (Consider=0) Uncertainty
Values (arc sec, 3o0)
IRU RBs 673
Attitude IRU SFs
only IRUM/AS
CCD1 M/As
CCD2 M/As
FSS M/As
iRU RBs CCD1 M/As 644
IRU SFs
IRU M/As
CCD2 M/As
FSS M/As
IRU RBs CCD1 M/As 605
IRU SFs CCD2M/As
IRU M/As FSS M/As
CCD1 M/As | IRURBs 292
CCD2M/As | IRU SFs
FSS M/As IRU M/As
IRU RBs IRU M/As 601
IRU SFs
CCD1 M/As
CCD2 M/As
FSS M/As
IRU M/As IRU RBs 86
IRU SFs
CCD1 M/As
CCD2 M/As
FSS M/As
IRU SFs IRU RBs 8
IRU M/As
CCD1 M/As
CCD2 WAs
FSS M/As
LEGEND: RBs: RateBiases SFs: Scale Factors
M/As: Misalignments CCD: CCDST




Attitude and IRU biases were also solved-for,
mimicking the onboard computer and its sequential
filter and using prelaunch consider values for all other
sensors, with differing combinations of the CCDSTs
and FSS functioning. These combinations are shown
in Table 9. The first case is for all three sensors "on"
as a baseline, even though this is not a flight mode.
The other three combinations shown are flight modes,
namely CCDST1 and 2, CCDST1 and FSS, and
CCDST]1 by itself. As one would expect, the last case
shows the largest uncertainty.

Table 9. Attitude Errors With Prelaunch
Uncertainties (IRU Bias Solved For)

Solve-for Prelaunch Sensor Attitude
Parameters | Consider Values | Combination | Uncertainty
Used Used (arc sec, 3o)

IRU SFs ccM 292

Attitude IRU M/As CCD2

and CCD1 M/As FSS

IRURBs | CCD2M/As
FSS M/As
IRU SFs cc, 292
IRU M/As cCcDh2
CCD1 M/As
CCD2 M/As
IRU SFs ccD1 288
IRU M/As FSS
CCD1 M/As
FSS M/As
IRU SFs CCD1 317
IRU M/As
CCD1 M/As

LEGEND: RBs: Rate Biases SFs: Scale Factors

M/As: Misalignments CCD: CCDST

The root sum square (RSS) uncertainties shown in
Tables 8 and 9 were for the attitude uncertainties at the
end of each respective ADEAS run.

Results Using Solved-For Alignment Uncertainties

All of the results in this section were based on a
sequential filter, solving for the attitude and IRU rate
bias uncertaintics, as does the actual EOS-AM1
onboard computer. The computed attitude
uncertainties are with respect to the BCS. The attitude
uncertainties based on the prelaunch uncertainties
utilize the uncertainties for all sensors (CCDSTI,
CCDST2, FSS, and IRU misalignment errors), whereas
the attitude uncertainties computed using the
calibration profile based on Maneuver 1, also known as
"on-orbit" nominal, assume that the CCDSTI
alignment is perfectly known. The prelaunch consider
values for the IRU scale factor errors were used in all
cases.
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The calibration profiles based on Maneuvers 2 and 3
were also applied against Maneuver 1, with no change
in resuits, and are therefore not shown in Tables 10
through 12.

Use is also made of ADEAS' capability to display the
error budget for each computed uncertainty. This
shows the contribution of each consider parameter,
measurement noise, and dynamic noise to the overall
error.

Two CCDSTs and One FSS

This is not a flight mode for the onboard computer, but
these solutions are provided as a bascline . The attitude
uncertainties based on the prelaunch sensor alignment
uncertainties are dominated by the CCDST1 and
CCDST2 uncertainties (large), whereas the attitude
uncertainties based on the 1-rpo calibration are
dominated by CCDST2 misalignment uncertaintics
(small), closely followed by measurement noise. Use of
the 1-rpo calibration profile easily satisfies mission
requirements for EOS-AM]1 in the nominal attitude.

Table 10. Attitude Error for CCDST1 & 2, FSS

Calibration Maneuver Attitude Uncertainty
Profile Profile arc sec, 3o)
X Y Z
Mission
Requirement N/A 4.0 44.0 36.0
Prelaunch Maneuver 1
Values (1-RPO) 166.0 | 1840 | 155.0
On-Orbit Maneuver 1
(1-RPO) (1-RPO) 8.3 9.0 54
Two CCDSTs

The nominal sensor complement for onboard attitude
determination is two CCDSTs. These numbers do not
differ at all from those of Table 10, and the error
budgets are identical. Thus the conclusions for two
CCDSTs are identical to those presented for two
CCDSTs and the FSS, except that the FSS would not
improve the attitude solution. This is as one would
expect intuitively.

One CCDST and One FSS

This is the first contingency mode for the onboard
computer, in case one CCDST fails. The attitude
uncertainties based on the prelaunch sensor alignment
uncertainties are dominated by the CCDSTI1



uncertainties (large), closely followed by the FSS
uncertainties. The attitude uncertainties based on the
1-rpo calibration are dominated by measurement noise.
Use of the l-rpo calibration profile easily satisfies
mission requirements for EOS-AM1 in the nominal
attitude, and the error is only slightly worse than the

cases with two CCDSTs.

Table 11. Attitude Error for CCDST1 & FSS

Calibration Maneuver Attitude Uncertainty
Profile Profile arc sec, 3o)
X Y Z
Mission
Requirement N/A 4.0 440 36.0
Prelaunch Maneuver 1
Values (1 - RPO) 1760 | 155.0 | 166.0
On-Orbit Maneuver 1
(1-RPO) (1-RPO) 115 12.2 9.7
One CCDST

This is the second and last contingency mode for the
onboard computer, in case one CCDST and the FSS
both fail. The error budgets for the various cases
parallel those listed in the previous section, ignoring all
references to the FSS. Again, use of the 1-tpo
calibration profile easily satisfies mission requirements
for EOS AM-1 in the nominal attitude. Notice that the
lack of FSS measurements did not change the level of
uncertainty from the CCDST/FSS scenario.

Table 12. Attitude Error for CCDST1 Only

Calibration Maneuver Aftitude Uncertainty
Profile Profile arc sec, 3o)
X Y 4
Mission
Requirement N/A 410 440 36.0
Prelaunch Maneuver 1
Values (1 -RPO) 180.0 | 1800 | 180.0
On-Orbit Maneuver 1
(1-RPO) (1-RPO) 115 122 9.7
CONCLUSIONS

Relative to one star tracker, the alignment uncertainties
of the other star tracker and the fine Sun sensor become
smaller asymptotically with the use of longer spans of
sensor data. These results are independent of the
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attitude maneuver scenario, except for the maneuver's
influence upon the length of time that the Sun is visible
to the FSS.

Attitude maneuvers that deviate from nominal pointing
are necessary for improving the IRU alignment
uncertainties. The larger the attitude maneuvers, the
smaller the IRU alignment uncertainties, which in turn
reduces the IRU rate bias uncertaintiecs. The smaller
the IRU rate bias uncertainties, the more accurate will
be the propagated attitude solution in the onboard
Kalman sequential filter during those times when
sensor observations are unavailable. The statements of
this and the preceding paragraph, although derived
from the particulars of the EOS-AM1 mission, are true
independent of the details of a particular satellite.

Since performing a +20 deg roll maneuver reduces the
IRU alignment uncertainties by a factor of 10 or more,
and reduces the IRU rate bias uncertainties by a factor
of 50 or more (in both cases relative to the prelaunch
uncertainties), it is recommended that attitude
calibration maneuvers have at least a 20 deg excursion
from the nominal 1-rpo attitude profile and, if possible,
that they include both roll and yaw maneuvers.

If no calibrations are performed, and the EOS-AM1
sequential filter is used to solve for the attitude and IRU
rate biases, then the RSS absolute attitude uncertainty
is of the order of 300 arc sec, which is far in excess of
the mission requirements. Therefore, some attempt at
calibration must be made. A calibration profile solely
based upon the nominal 1-rpo motion will suffice for
all sensor combinations.

As suggested by data presented in this report,
calibration maneuvers should have a minimum of 20
deg in roll and yaw, which would provide robustness to
the accuracy of attitude solutions for large deviations
from nominal l-rpo pointing. Previous analyses for
other missions have indicated that 30-deg maneuvers
about each axis are needed to achieve the best results.
As the EOS orbits will have plenty of star observations
for attitude determination, the choice of one CCDST as
backup to the two-CCDST configuration is adequate.
The FSS would not improve the attitude solution unless
star observations were unavailable due to Sun/moon
interference in the CCDST, during times when the Sun
is visible to the FSS.

The results of this analysis show that the onboard
attitude determination function will be more than able
to meet the uncertainty requirements.
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ATTITUDE AND TRAJECTORY ESTIMATION USING EARTH MAGNETIC
' FIELD DATA
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Abstract

The magnetometer has long been a reliable, inexpensive sensor used in spacecraft momentum management
and attitude estimation. Recent studies have shown an increased accuracy potential for magnetometer-only
attitude estimation systems. Since the earth’s magnetic field is a function of time and position, and since
time is known quite precisely, the differences between the computed and measured magnetic field
components, as measured by the magnetometers throughout the entire spacecraft orbit, are a function of
both the spacecraft trajectory and attitude errors. Therefore, these errors can be used to estimate both
trajectory and attitude. Traditionally, satellite attitude and trajectory have been estimated with completely
separate systems, using different measurement data. Recently, trajectory estimation for low earth orbit
satellites was successfully demonstrated in ground software using only magnetometer data. This work
proposes a single augmented Extended Kalman Filter (EKF) to simultaneously and autonomously estimate
both spacecraft trajectory and attitude with data from a magnetometer and either dynamically determined
rates or gyro-measured body rates.

I. Introduction

The magnetometer, due to its reliability and low cost, has been the focus of many studies in the recent past.
‘Emphasis has been placed on using the magnetometer alone, without any additional input, to estimate the
spacecraft trajectory (References 1, 2, and 3) and attitude (References 4 and 5). Studies have also been
performed to determine the ultimate accuracy of the magnetometer in estimating attitude when accurate rate
information is available (Reference 6).

In using the magnetometer to estimate attitude, the spacecraft position is required to compute the reference
magnetic field. In using the magnetometer to estimate position, including the spacecraft attitude improves
the results. The data used to estimate either the position or the attitude is a function of the difference
between the observed magnetometer measurements and the reference magnetic field. In this work we use
this difference to estimate both the spacecraft attitude and position. This is an extension of the work
performed by Shorshi and Bar-Itzhack (Reference 1) to add the attitude to the trajectory state vector.

Many of the future missions, such as the Small and Mid-size Explorer Series and university class explorers,
are looking for low cost and autonomous approaches to navigation and attitude estimation. This work could
prove valuable to these missions as a prime navigation system, with coarse accuracy requirements, or a
backup to a prime system where more stringent accuracy is required.

In this work we present the method of expanding the Extended Kalman Filter of Reference 1 to include the
estimation of the spacecraft attitude, and the results of tests on the combined filter using simulated data.
Incorporating the attitude into the filter requires an estimate of the rates. In this work we assume that the

! Sophie and William Shamban Professor of Acrospace Engineering, Faculty of Aerospace Engineering,
Technion-Israel Institute of Technology, Haifa 32000 Israel, Currently at NASA GSFC as an NRC NASA
Research Associate.
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rates would be provided by gyroscopes. A method similar to that of Challa (Reference 4) or Azor, Bar-
Itzhack, and Harman (Reference 7) could be applied, though, in the absence of gyroscope data.

I1. Extended Kalman Filter Algorithm

The EKF algorithm is based on the following assumed models:

System Model: X = f(X(©),1) + w() (D
Measurement Model: Zr= h(X(t)) +.vi 2)

where w(t) is a zero mean white process, viis a zero mean white sequence, and X(t) is the state vector
defined as

X'=[a ¢ 1,9 0,6,Csql
The first six elements of X(t) are the classical Keplarian elements which determine the spacecraft position
and velocity, namely the semi-major axis (a), eccentricity (e), inclination (i), right ascension of the

ascending node (), argument of perigee (@) , and true anomaly (8). C; is the drag coefficient and g
represents the attitude quaternion.

Measurement Update Stage:
The linearization of equation (2) results in
=HXi+w where H, =[H, | H,] 3)
H, is the measurement matrix for the orbital states and is derived in Reference 1, and H, is the measurement

matrix for the attitude states. The derivation of H, is given in Appendix A. The effective measurement
used by the filter is given as

L= Em.k = .ﬁ_@ k!tk) (4)

where B is the magnetic field vector measured by the magnetometer and _ﬁ_(X ol is the estimated

magnetic field vector as a function of the estimated state X x attime t, . The dependence of E(X Lt on the
position and the attitude is seen in the derivation of equation (3) in Appendix A.

The state update equation is
Xi@®= X +Kize ®)
where K, is the Kalman gain computed according to
Ky = POH THP(H" + Ry ©
Ry is the measurement noise matrix and the covariance matrix is updated as usual with
P(+) = [I - KHJIPOT - KHd™ + KRK," )

Equation (5) is used to update the orbital states, but not the attitude states. The update of the attitude states
is done as follows. As shown above, the state vector contains the attitude represented by a quaternion. The
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EKF estimates an error in the quaternion, expressed as a vector of three small angles, o, defined in
Appendix A and derived in Reference 8. This error is combined with the current estimate of the quaternion
to give an updated estimate of the quaternion, which is then propagated to the next time point.

Propagation Stage:

The ﬁlter'dynamics model is given as

3 . Wo
Xx1= AKXk ) X'yt w

a

A, O 8)
:l where AX'y)= [ 0 A ]

where X’T= [aa e, i: Q; , e, Cd’ g]

A, is the linearized transition matrix for the orbital states and is a function of the estimated orbital states,
which are elements of X’. A, is defined in Reference 9. A, is the transition matrix for the attitude error, o,
which are also included in X’. A, is based on the development from Reference 8. The transition matrices
A, and A, are first order approximations computed from the Jacobian F(Xy) derived from the linearization
of equation (1).

The covariance matrix is propagated from time t, to time ty,; using:
Pea() = A X () PUHAL X (H) + Q (10)

Q is the process noise covariance matrix for both the orbit and attitude states. The orbit states are
propagated by solving equation (1) numerically without the noise component, as in Reference 8. The
dynamics of the attitude states is linear. Assuming a constant angular velocity between gyro measurements,
the attitude states are propagated using

~

i, =% q ® (an

where

<I)-—‘I’T—1— Tz-l— 7 T“l ’ 2
o =1+, T+ 2!(‘I’k Y+ 3!(‘1’1: ) +4!("I’k) +5!(lPkT) + o

0 w(3) -w(2) w(l)
3 -w(3) O w(l) w(2) _
and ¥, =05 w@) -wl) 0 w(3) and w=w;

w(l) -w2) -w@) 0

T is the time between gyro measurements, w is the angular velocity vector, and the arguments 1, 2, 3 refer
to the 3 components of w. Equations (10) through (12) are particularly suitable when testing with
simulated data, because the rates are almost constant, with added noise. 'When the filter is applied to real
data, equation (1) will be solved numerically without the noise component, as in Reference 8.

III. Simulation

A basic simulation was developed to test the EKF outlined above. The scenario consisted of simulating a
spacecraft in low-earth-orbit with an earth-pointing attitude, i.e. maintaining a one revolution-per-orbit
(RPO) attitude. The spacecraft axes, or body axes, are aligned with the orbital axes as defined in Figure 1.

137



I

>N

ocy roll

(xz -pitch

0, yaw

Earth
center

< spacecraft
position

Figure 1. Definition.of Orbital Axes

The rotation rate, w, used in equation (11), has a component only about the z, axis. The derivation of the
instantaneous rate experienced by the spacecraft is given in Appendix B. The axes labeled with “I” refer to
the inertial coordinate system. Those marked with ‘o’ refer to the orbital coordinates. The quaternion
represents the rotation from inertial coordinates to body coordinates. The attitude error, ¢, represents three
small Euler angles around the body coordinates, which rotate the estimated quaternion to the true
quaternion. The attitude displayed in the table below and in the results section is given in terms of Euler
angles also. These Euler angles describe the attitude with respect to the orbital coordinates. Euler angles
were chosen for the display since the true Euler angles are all zero.

The parameters which define the baseline simulated orbit and attitude are given below.

Parameter Truth A-priori
estimate
a (km) 7000 8000
e 0.05 0.06
i(deg) 50 54
Q (deg) 90 85
o (deg) 0 5
6 (deg) 45 50
Cq4 0.02 1
roll (deg) 0 10
pitch (deg) 0 10
yaw (deg) 0 10
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IV. Results

The simulation described above was run for 300,000 seconds. Noise was added to the simulated

magnetometer data and to the simulated rate data. The magnetometer measurement noise was 2 milliGauss
. - 1,

and the noise in the measured rate was 0.017 deg/sec” .

Figures 2 through 4 show the root-sum-square (RSS) error in the position estimate. The a-priori position
error is 1453 km (computed from the orbital parameters given above). Figure 2 shows the error for the
entire 300,000 seconds, approximately 51 revolutions (the orbital period is 97 minutes). Figure 3 shows the
first 20,000 seconds. The error converges to less than 100 km within 10,000 seconds, which is roughly 1.7
orbits. Figure 4 shows the final 50,000 seconds. The average converged position error is about 4 km.
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Figure 3. RSS Position Error - First 20,000 Seconds
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Figure 7. RSS Attitude Error - Last 50,000 Seconds

Figures 8 through 10 show the RSS velocity error. The a-priori velocity error is 0.96 km/sec. Like the
position, the velocity error converges within 10,000 seconds, as shown in Figure 8. Figure 9 shows that the
error is less than 0.25 km/sec at the end of the first 5,000 seconds. Figure 10 shows that the steady state
velocity error is approximately 0.004 km/sec.

141



™

0
b
-
.
1
.
'
H
H

e — i —— g

e m e mem . ——————— i —-

R

- s PP Mg
]
v
»
v
»
>
H
v

25

2P -

Shecameaas
1

x 107,

25

2
ty Error

i

1.5
time (seconds)
RSS Veloc

Figure 8.

0.5

L]
H
v
H
H
H
.
‘.
Y

.........

---------------------

v
:
H
i
i
H
'
i

2000

[
H
i
H
H
N
.
-
.

b

1000

A R e bt

Rof SR EEE T

~
(s9s/ny) Joura

OSp--e-mememmea-
0

4000 5000

3000

time (seconds)

Figure 9. RSS Velocity Error - First 5000 Seconds

142



0.02 T H T T
0.018 |- remrerememeiee e S SR SR -
0.016 - --rmemem s T T S -
0.014 f---nomnmnon o S SOOI RO —— R -

Boo1zf--cieeee E SO — RN SN — S <

RS S U A— SRR S— S .

s : : : ;

R S e I S O s [EGeRREE RS froomemeeeee -
0.006 |- J--p - -- - me oo o - o e T
0.00a Bt} -4 -4 S A 4 f e e A A e
000z Py f-- MM YLV S A A LA ]

o L i i k
2.5 2.6 2.7 28 29 3
time (seconds) x10°
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Figure 11 shows the RSS measurement residuals for the first 70,000 seconds (the residuals are computed
using equation (4) ). The average value is approximately 4 milliGauss. The residuals also converge quickly
from an initial value of 186 milliGauss (RSS).
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Figure 11. RSS Residual
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V. Conclusions and Future Work

This work presents a single augmented Extended Kalman Filter that simultaneously estimates both
spacecraft trajectory and attitude using data from magnetometers and gyroscopes. The results from the first
test of this filter using simulated data, indicate that the filter can indeed estimate both the trajectory and
attitude. Starting with errors (RSS) of over 1400 km in position and 10 degrees in attitude, the filter
converged to less than 5 degrees in attitude within 3,000 seconds and to less than 100 km in position in
10,000 seconds (1.7 orbits). The average steady state values are less than 1 degree for attitude and 4 km
for position. The steady state velocity errors (RSS) are approximately 4 m/sec and the average
magnetometer residual is about 4 milliGauss (RSS).

Further testing will be conducted both with simulated and real spacecraft data. The magnetic field varies
more at higher inclinations. Therefore, the effect of the orbit inclination angle will be studied. Tests will be
conducted as to the filter’s ability to estimate attitude and trajectory at low inclinations. The sensitivity to
errors in Q will be examined. Shorshi and Bar-Itzhack (References 1 and 9) found that the estimation of Q
was critical to the convergence of the position error. Additional errors will be introduced into the simulated
data, e.g. magnetometer and gyro biases. The state vector will be expanded to include these biases and the
ability of the filter to estimate these added states will be tested. Finally, tests with real spacecraft data from
satellites such as the Gamma Ray Observatory, the Upper Atmospheric Research Satellite, and the Extreme
Ultraviolet Explorer will be conducted.
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APPENDIX A - Derivation of the Measurement Model

The magnetic field vector can be resolved in the magpetic spherical coordinates, as shown in Figure A.1, as
B': = [B,, Bes, Bysl-

3 u
N
N B
N T
B
g
0
Earth R: | Be
center 7) | Y
| ’
b N\ '
N

Xa
Figure A.1. Definition of the Magnetic Spherical Coordinates
The magnetic field at the spacecraft location, computed using the IGRF magnetic field model and the
estimated position, can be written as
& _AIAFA . (A.1)
Y =DypDi Bg +n
and the measured magnetic field vector, as measured by the magnetometer can be written as
InF
_.Y_m = DbDI .B—F + le (A.2)

where
Df, = the transformation from inertial to body coordinates

Df = the transformation from magnetic spherical to inertial coordinates

n' = the magnetic field model error
1, = the magnetometer measurement error

The effective measurement, z, is defined as follows

z=Y_ - ¥=DIDfBp+n,_ - DIDTB. ~n (A3)

F

Rewriting the transformation of EF as
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DgDf B = DyDf By + ADLD] Bp) (A4)

and
n=n_ -n (A5)
This leads to
z=AD{D[ Bp)+1 (A.6)
where
A(D{Df Bp) = AD}(D Bg) + DLADT Bp) A

The second term on the right hand side of equation (A.7) is the derivation of the measurement matrix for the
orbital states given in Reference 9. The expansion of the first term leads to the measurement matrix for the
attitude states. Rewriting that term as

AD}(Df Bp) = ADy B, (A.8)

where .
B, = the computed magnetic field vector in inertial coordinates

The error in the transformation can be defined as the difference between the true body coordinates and an
intermediate coordinate system, referred to as the computed body coordinate system. The matrix that is

computed is ﬁf, , which is equivalent to a transformation to the computed body coordinate system, which
can be written as

AT _ I _ byl A9
b =pl =pPpl (A-9)
SO

AD} =DPD] - D} (A.10)

where D{, is the true transformation from inertial to body coordinates. For small attitude error we can

assume that the matrix Dg is composed of small angles, thus

0 -y o (A.11)
pl=1-|y 0-¢|=I-[ax]
B ¢ 0
therefore from equation (A.11)
AD} =I-[o x] D} - D} =-[o x]D} (A.12)

Substituting equation (A.13) into the first term on the right-hand side of equation (A.7) yields
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AD} (D} Bp) = -[at xID} - B, =-[a x]B,, =[B,, x (A.13)

Substituting equation (A.13) into equation (A.6) along with the measurement matrix for the orbital states,
gives

z=[By x]ot + Hoxo + 0= [H, [Box]]x +n (A.14)

where H, is the measurement matrix for the orbital states, x,, and X is composed of both the orbital states
and the small angular errors in the attitude, o Since By is not known, the magnetic field vector measured
by the magnetometer is used instead. The combined measurement matrix is then given as

H=[H, [B,xl]= [H, H,] (A.15)

APPENDIX B - Derivation of Spacecraft Rotation Rate

The instantaneous rotation rate about the spacecraft z, is derived here from the orbital parameters which

spacecraft
position

Earth
center

Figure B.1. Relationship Between Orbital Angles

describe an elliptical orbit (the average rate is 1 RPO). Figure B.1 defines the angles o, p, z, and y. The
rotation rate, w; , is defined as

= (B.1)

The angle, o, can be written as

a=0+p (B.2)

but
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- therefore

Equation (B.1) then becomes

The relationship between the Keplarian elements, e, 0, and v is given as (Reference 10)

then

Performing the differentiation in equation (B.7) leads to the following equation

Vs

p=m/2 +%

a=0+n/2+y

tan(y) =

gt—tan(v) =

cos?(y)

wz =(5(. =é +’?

e -sin(0)

1+e-cos®)

dt

2 -sinZ (@)%

i 1+e-cos(0)

|

1+e-cos®)
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_(1 e -sin(0)
1+e-cos(@)

+e'cos(9)6'J
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Abstract

In this paper, a summary of the basic simulation
parameters and results of a new study for the Geostationary
Operational Environmental Satellite (GOES) is shown. The
study for GOES involves the simulation of minor
modifications to the current spacecraft, so that the relative
performance of these modifications can be analyzed. The
first modification studied requires the placement of a baseline
inertial reference wunit, such as the Dry Rotor Inertia
Reference Unit (DRIRU-H) or the Hemispherical Resonator
Gyro (HRG), onto the spacecraft. The imager/sounder
assembly is currently used to obtain landmark and/or star
observations in order to compensate for spacecraft motions
and external disturbances through ground processing. The
study utilizes the imager/sounder assembly as another attitude
sensor for on-board attitude determination. Also, the addition
of star trackers is used to provide precise attitude knowledge.

Introduction
The current (GOES I-M) spacecraft specification for the
knowledge requirement is 112 prad . This requirement is

met through ground processing 99% of the time in the
east/west direction and 95% of the time in the north/south
direction. The spacecraft specification for the within-frame
registration is 42 prad . The current spacecraft uses an Earth

Sensor Assembly (ESA) to provide roll and pitch information.
Yaw knowledge is not sensed. However, yaw control is
achieved through roll/yaw coupling. A set of gyros based on
the Digital Integration Rate Assembly (DIRA) also is on the
current spacecraft. However, the DIRA has an operational
lifetime of 2000 hours. Therefore, the on-board gyros are not
used for mission mode attitude determination and control.

An outline of the remainder of this paper proceeds as
follows. First, the simulation model for the gyro, the ESA,
and the imager/sounder assembly are shown. This includes
the simulation parameters used for Earth clouds and Earth
radiance/gradients effects in the ESA, and non-repeatable
errors in the imager/sounder assembly. Then, the simulated
attitude sensor and gyro measurements are used in a Kalman
filter for attitude determination. Results are presented for two
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cases: 1) using the ESA, and 2) using both the ESA and
imager/sounder assembly. = Next, results using a star tracker
are shown. This includes simulation results with and without
the addition of gyros. Finally, conclusions are stated based on
the simulation results.

Earth Sensor. Imager/Sounder

In this section, a brief overview of the simulation
parameters for the gyro model, the ESA model, and the
imager/sounder model is shown. The true angular velocity is
assumed to be modeled by [1]

@=8,-b-n, )

where @ is the true angular velocity, @ ¢ is the gyro-
determined angular velocity, and b is the gyro drift vector,

b=n, @

The 3x1 vectors, n, andn 5 Are assumed to be modeled by
a Gaussian white-noise process with

En,0}=0 i=12 3)
E{ni(t)n]?(z')}=giaija(z-t') Lj=12 (4
where
25 0
Q= Gyi3x3 3x3 } (5)
[ Osxs O2lsg

The DRIRU-II drift-rate noise and measurement noise
characteristics are given by ¢, =215%107* uxad/ sec3/ 2
and ¢, =0.206 ].u'ad/ sec’?. The nominal motion of the

spacecraft involves a rotation once per orbit about the
spacecraft’s y-axis. Therefore, the nominal angular velocity .
is given by



0
o=|o, ®
0

where @,, is the orbit rotation (727x 107 rad / sec).

The ESA measures the spacecraft’s roll and pitch angles.
These angles are measured with respect to a moving Earth
frame. The gyros provide attitudes with respect to an
inertially fixed frame (e.g., GCI). Since the body rotation
axis is about the spacecraft’s y-axis, the body measurement
vector is given by [2]

—sin(p)cos(r)
B,=| sin(r) ™
cos(p)cos(r)

where r and p are the scanner roll and pitch angles,
respectively. The inertial reference vector is given by

I, =AT(g)B, @)

where g is the true quaternion (obtained by kinematic
propagation using the true angular velocity). The ESA
“measurements” are obtained by using the following model

P=p+vp+w, ©)

where v, is a zero-mean Gaussian process with a 36 value of

0.02 degrees, and w), represents the mon-repeatable errors
due to Earth cloud and Earth radiance/gradients effects. The

non-repeatable error is assumed to be modeled by the

following discrete process )
172
wp(i+1) = Aw, (i)+ L(1- 4%) " (i) (10a)
A=exp(-4AzB) (10b)

where At is the sampling interval (0.25 seconds for the ESA),
B is the bandwidth (for weather purposes, this set to about
1/6 days), L is the 1o amplitude (experience has shown that
this is about 200 prad), and g is a zero-mean normal
Gaussian process. This same error model is applied to the
Earth roll “measurement”  Since the roll and pitch
measurements from the Earth sensor are small, the body
measurements can be approximated by

-p
¥ (11)
1
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The imager/sounder assembly can measure stars in .

23°B/Wx21°N/S field of view, outside of the Earth limb.
The orbit-attitude tracking system contains a catalog of bright
stars visible by the imager/sounder which can sense three
stars at 45 second intervals. For simulation purposes these
stars are assumed to be found in different quadrants in the
field of view. The imager/sounder star windows are
staggered so that the data is acquired every 15 minutes. The
imager/sounder measures the tangent of two angles, B, and

B, ., resulting in a body vector given by [2]

; tan 4
Jl+tan2£3 +tan? B I_mﬂz (12)
1 2 1

The imager/sounder “measurements” are obtained by
using the following model

By =

mﬁi=mﬂi+vbi+wbi, i=1,2 (13)

where v, is a zero-mean Gaussian process with a 30 value of
28 prad . The non-repeatable error in the imager/sounder is
assumed to be modeled by the following process

2 Do

wy, =[1 0]x

(14a)

(14v)

where m is a zero-mean Gaussian process. The standard
deviation of | is selected such that the output of w;, has a

30 value of about 200 prad.

Simulation Results

For this part of the study, an investigation of the relative
performance between using on-board gyros and without the
use of gyros was examined. For the on-board gyro case, a
standard Kalman filter with a gyro propagated model was
used for attitude determination. The simulations were run for .
six cases, which include: 1) ESA only with no non-repeatable
(NR) errors, 2) ESA only with NR errors, 3) ESA and
imager/sounder (I/S) with no NR ESA errors and no NR I/S
errors, 4) ESA and I/S with no NR ESA errors and with NR
VS errors, 5) BSA and /S with NR ESA errors and no NRI/S
errors, and 6) ESA and I/S with both NR ESA errors and NR
I/S errots.

The first two cases involve using the ESA only. A plot of
a typical non-repeatable (radiance/gradients) error effect is
shown in Figure 1. From this plot, the magnitude of the error
is seen to be about 200 prad. A Monte Carlo type analysis
shows that 200-250 prad is about the 30 range for this error.
Error angle plots for the first two cases are shown in Figures



2 and 3. Withno NR errors in the ESA, the attitude accuracy
is within 60 prad. With the NR errors in the ESA, this
accuracy is degraded to about 200 prad. The large errors in
the yaw angle estimates are due to filter un-observability.
The observability of using an ESA combined with gyro
measurements in a Kalman filter can be shown by using the
simplifying assumption of a constant coefficient system. The
state vector in the Kalman filter is given by [1]

Ao
Ax= [ Ab] (15)

where At is.a 3x1 angle error vector (roll, pitch, yaw), and
Ab is a 3x1 gyro-bias emor vector. The system error
equations, state matrix and sensitivity matrix are given by

Aj = F Ax +GA
= (16a)
Az=HAx+Ay
—[CO X] —I3X3 }
F=| ™ (16b)
{ O35 Osxs
H= [[A(g)_li;’ x] : 03x3] (160)

where the angular velocity vector (@) is given by Equation

(6). and [@x] is the cross product matrix. Therefore, the -

state error angle equations are given by

Ad.l = —C!)nAa3 - Abl (173.)
Adz = —Ab2 (17b)
Ad.3 = (DnAal - Ab3 (170)

The first and third equations show the coupling effects
between roll and yaw. The nominal body measurements for
the ESA are given by

0 -1
0 -264x107°
ve|727 %107 0
1 0
0 0
. 0 0
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0
B% = A(g)B5 =|0 (18)
1

which reflects the fact that the spacecraft is Earth-pointing.
From Equations (16)-(18), the state matrix (F) and
sensitivity matrix (H) are now constant.

The observability matrix is given by

H
HF

O=|HF? (19)

-HFS-
which is an 18x6 dimensional matrix. This matrix must be
rank 6 for the system to be fully observable. However, using
the system maftrices in Equation (16) yields a rank 5
observability matrix. A singular value decomposition (SVD)
of the observability matrix can provide an insight to which
states are observable, as well as the degree of observability.
The SVD of Equation (19) is given by

vsvi=0 (20)

where § is an 18x6 diagonal matrix, and U and V are
unitary matrices with dimensions 18x18 and 6x6,
respectively. The diagonal elements of the first 6 rows of §
yield the singular values of the system. These singular values
yield the degree of observability, which is determined to be

pod el e

S= 1 21

727x1073
0

The columns of V shows which states are observable, and
also show the degree of cross correlated observability in the
states. This matrix is determined to be

-264x107° 0 0 0
1 0 0 0
0 0 0 1
22)
0 0 0 -727x107°
0 1 0 0
0 0 -1 o |




The first four columns of V correspond to completely
observable states. The second and third columns of V
-indicate that the roll and pitch angle states are completely
observable. Also, there is some correlation between these

states, shown by the —2.64x10™> term. The sixth column of
V is associated with a singular value of zero. This shows
that the yaw angle state is not observable. This reflects a
higher covariance in the yaw angle estimate, as compared to
the roll and pitch angle covariances (see Figure 4). The
fourth column of V -corresponds to the pitch drift-rate state,
which is completely observable, since its associated singular
value is one. The fifth column of V corresponds to the yaw
drift-rate state, which is weakly observably, since its

associated singular value is small (e, 727x107).
However, this state is completely decoupled from any other

state. The first column of V, as well as the sixth column,
shows the coupling between the yaw angle state and the roll
drift-rate state (due to quarter-orbit coupling). This indicates
that the error in this state is attributed to both actual roll rate
errors and yaw angle errors. Since the yaw angle state is not
observable, the roll drift-rate errors and yaw angle errors
cannot be separated. A plot of the gyro drift-rate covariances
is shown in Figure 5. The error covariance of the roll drift-
rate state is larger than the yaw drift-rate error covariance.
This is most likely due to the fact the yaw angle errors cannot
be separated from the roll drift-rate error.

Plots of the four remaining cases, which include the
imager/sounder as an attitude sensor, are shown in Figure 6-
9. A summary of the results for all cases is shown in Table 1.

Table 1 Attitude Errors for Various Sensor Configurations and Error Sources

Case . Esror Sounrces Roll Errors Pitch Errors Yaw Errors

1 no NR ESA 60 prad 60 prad | 1x10° prad

2 NR ESA 200 prad 200 prad 1x10° prad

3 no NR ESA, no NR IS 60 pirad 60 prad 200 prad

4 no NR ESA, NR I/S 100pirad 100 prad 200 prad

5 NRESA, no NR1I/S 100 purad 100 prad 200 prad

6 NR ESA, NRI/S 200 prad 200 prad 300 prad
Since the imager/sounder can measure stars which are off
nadir, yaw angle information is possible. From Table 1, .
using the imager/sounder as another semsor significantly 0=0g-n,~b (23a)
improves the yaw angle estimate. Also, since the magnitude
of the non-repeatable errors is assumed to be approximately
the same in the ESA and in the imager/sounder assembly, the b=n, (23b)
attitude errors are also approximately equal when adding
these errors to each sensor individually (i.e., case four and I=Al+ Bml . (23¢0)

five). The sixth case involves using both the ESA and
imager/sounder assembly with non-repeatable errors added to
each sensor. A purely deterministically found attitude using
the QUEST method yields errors which are approximately the
same magnitude as case six (see Figure 10). Therefore, the
addition of gyros does not seem to significantly improve the
attitude accuracy.

In order to possibly estimate the non-repeatable effects in
the imager/sounder, a colored noise Kalman filter was
developed. An analysis can be performed by expanding upon
Farrenkopf’s model. The assumed model for the colored-
noise Farrenkopf analysis is given by [3]

where 0 is the scalar (single-axis) attitude angle, @ g is the
gyro output, b is the gyro-drift rate, } is the colored-noise
output, 1,,, M,, and M , are zero-mean Gaussian processes

with standard deviations of 6 ,,, 6, and G ;, respectively, and
A, and B, aie the colored-noise system matrices, given by
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0
B, = [1] (24b)
where @,, is set to orbit rate. Therefore, the full continuous
system matrix from Equations (23) and (24) is given by

0 -1 0 O
00 0 O _
F"oo 0 1 25
0 0 -02 0]

with the state-transition matrix of F denoted by ©®. The
measurement model is given by
0
J=H|b|+V (26)
1

where v is a zero-mean Gaussian process with covariance 7,
and H is given by

H=[10 1 0] @n

Equations (26) and (27) show that the colored-noise is added
to the measurement. The state-noise covariance matrix can
be computed as

clar+13c2A® 12627 0 0
_ 2As2 2
0= 120, oAt 0 0 28)
0 0 0
0 0 0 oiar

where At is the sampling interval. The steady-state error
covariance just subsequent to an update is given by

; -1
Pp=0opa’ - PHT[HPHT +r] HP+Q (29

which can be solved using an eigenvector decomposition of
the Hamiltonian matrix, where ® is the state transistion
matrix of Equation (25).

The standard deviation of the colored-noise input varies
from o, =1x10"7 prad to ©,;=1x10" prad, which
corresponds to a colored-noise magnitude ranging from
15prad to 1800prad (these are 30 values). This colored-
noise output simulates the non-repeatable effect in the
imager/sounder assembly. A plot of the steady-state colored-
noise attitude accuracy is shown in Figure 11. Note that the
standard Farrenkopf analysis with no colored-noise gives an
attitude accuracy of 56 urad (30 value), which is similar to
the results shown in Figure 6. This colored-noise analysis
shows that using an accurate model for the non-repeatable
errors can reduce the attitude errors when using a Kalman
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filter. However, an analysis using actual data should be
performed to investigate the validity of this approach.

Typical Non-Repeatable Error for ESA Measurements
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Knowledge Errors Using ESA Only with NR Etrors
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Figure 4 Attitude Error Covariance
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Gyro-Drift Error Covariances Using ESA Only withno NR Erors
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Knowledge Errors with no NR ESA Errors and with NR imager/S ounder Errors
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Star Tracker

In this section, the simulation results using a star tracker
with and without gyros are presented. First, the star tracker
model and parameters are shown. Then, a covariance
analysis is presented in order to determine the optimal
oricntation of the star trackers. Next, the availability of
actual stars for the GOES orbit is shown. Results are then
presented using QUEST [4] to determine the spacecraft
attitude. An Enhanced QUEST algorithm is also derived
which filters sensor noise. Finally, simulation results are
presented using gyros and a Kalman filter.

All results shown in this section include the dynamics
and external disturbance in the spacecraft. The GOES Flight
Software Dynamics Model implements the GOES AOCE
firmware emulation FORTRAN code from the SS/L into a six
-degree of freedom dynamics model. The initial model was
developed to examine the replacement of the ESA with gyros,
and the current capability was developed to compare with
actual GOES performance using the ESA. A star tracker and
star tracker/gyro were also added into the simulation. The
simulation includes rotating solar array inertia effects with
fully coupled inertia tensor dynamics, magnetic torquers with
ideal torque response, and gravity gradient and solar pressure
disturbances.

The star tracker can sense up to six stars in an 8° x8°
field of view with a sampling interval of 0.1 seconds. The
catalog contains stars which can be sensed up to a 6.0
magnitude. The star tracker measures the tangent of two
angles, B, and B,, resulting in a body vector given by

1 tan 3,
tanf,

B =
J1+mn2B1+mn252 1

(30

where the z-axis of the star tracker is along the boresight.
The star tracker “measurements” are obtained by using

-~

tanf; =tamf; +v,, i=12 (31

where v, is a zero-mean Gaussian process with a 30 value of
87.2665 prad (18 arc—sec).

Each star tracker must be positioned so that sun
obtrusions can be avoided at all times. For the GOES orbit,
and available sun shade for the star tracker, the minimum
exclusion area (allowing for a 3° safety margin) is from 55°
North to 55° South of the Nadir vector. For the single star
tracker case, the 55° orientation produces the following order
for knowledge accuracy: (1) roll angle (i.e., about the
spacecraft’s x-axis) is known most accurately, then (2) yaw
angle (i.e., about the spacecraft’s y-axis), and (3) pitch angle
(i.e., about the spacecraft’s y-axis) being the least accurate.

158

The roll is determined to be most accurate since the star
tracker is perpendicular to this spacecraft's x-axis. Pitch
accuracy cannot be improved since the 55° star tracker
position leads to the y-axis being the least “orthogonal” axis
with respect to the tracker boresight.

For the two tracker case, a covariance analysis was
performed in order to determine the optimal orientation.
Assuming that each star tracker measures one star for
simplicity, the error covariance matrix is given by [5]

62

_ T r 1 T
_|b1><b2|2 [blb1 +b, by +2(b1 X by }(by X by) ] 32)

where © is the measurement error standard deviation, and b,
and b, are measurement vectors of each star. For a North-
Soath configuration, these measurement vectors are given by

0 0

by =|sin55° {=| s (333)
c0s55°] |c¢
0 0

b, =|—sin55° |=|~s (33b)
c0855° c

Using Equation (33), the covariance in Equation (32)
becomes '

Colored-Noise Kalman Filter Using the Imager/Sounder Only
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Figure 11 Steady-State Colored-Noise Kalman Filter



1 0 0
2
(] 1
p=210 = o 34
> = (34)
i
0 0 —
i 52

The next configuration studied was to place the both star
trackers 55° North (or South) from Nadir and separated by an
angle ¥, The measurement vectors for this case are given by

o~

c¥ -5
b=| s | b,=| s (35)
cC cC

where § =sin¥, and ¢ =cos®. The covariance matrix in
Equation (32) for this case is given

P= o’
2(643' 252 +c2”252)
252 0 0 36)
X| 0 s2+c*52%6 csE-C3F%E s
0 csE-c35%s P +ct52s?

In order to determine the optimal separation angle, a cost
function involving roll and pitch errors (i.e., allowing for
relaxed yaw error conditions) is defined, given by

(5% +5* +c*5%6%) 37)
2(c*5%e% +c*5%s%)

Minimizing this cost function with respect to ¥ leads fo the
optimal separation given by © =90°. Therefore, the
covariance matrix in Equation (36) becomes

—32—00
A
p=S2lo L (38)
2 2
0 0 1

Equation (38) shows that the yaw angle contains the smallest
error, even though yaw was relaxed for the optimal separation
angle. Therefore, comparing Equation (34) and Equation
(38) leads to the conclusion that the optimal location for the
two tracker case is given by one tracker 55° North and one
tracker 55° South from Nadir.
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Simulation Results

Figure 12 shows the actual number of stars within the
North pointing tracker field of view. There is always a
minimum of 2 stars, except for the interval from 2.15 to
2.283 hours. A star with quality 1, but with a magnitude of
6.256, was added in this interval for the QUEST solution.
Figure 13 shows the number of stars within the South
pointing tracker field of view. A quality 2 star (5.137
magnitude) from the interval 15.45 to 15.483 hours, and
another quality 1 star (6.138 magnitude) can be added to
insure a minimum of two stars. This was not done to the
South tracker catalog, since the North tracker was used for
simulations involving one tracker. Figure 14 shows the
combined number of stars for both trackers (without the
addition of any stars). This shows that a minimum of 4 stars
is available for the two tracker case. Also, the percentages of
time in the orbit with the number of stars in the field of view-
are shown by Tables 2 and 3.

Table 2 North Pointing Star Cataleg

Number of Stars Percentage in FOV

0 0.0

1 0.625

2 10.972

3 15.625

4 27.709

5 23.958

6 21.111

Table 3 South Pointing Star Catalog

Number of Stars Percentage in FOV

0 0.0

1 1.458

2 8.056

3 20972

4 28.889

5 23.272

6 17.153

In this section simulation results using the QUEST and
Enhanced QUEST algorithms without gyros are presented.
The QUEST algorithm minimizes the following cost function

1w 1 2
(4= E;G_zl'g’k - A'I'-’k

(39)



where A is the attitude matrix, and 7 is the number of stars
available. QUEST is a deterministic approach which utilizes
a point-by-point solution, Therefore, previous measurements
are not utilized in the attitude solution. This algorithm
requires at least two star measurements to determine the
attitude. Therefore, a star is added (as previously described)
to the single star tracker case.

In general, the attitude kmowledge is determined more
accurately as the number of star measurements at one time
increases and/or the separation distance between stars
increases. This can be seen by the deterministic error
covariance, given by [4]

n -1

Pz =szk§_‘;[13x3 -, 2, | 40

Figure 15 shows the attitude errors from QUEST determined
attitude using a single (North) star tracker. Note the large
errors about 2 hours into the simulation, which corresponds
to the point where the star availability is mostly only 2 stars.
Figure 15 also shows the attitude errors along with the 3¢
bounds from Equation (40). This shows excellent agreement
between theory and simnlation. Figure 16 shows the attitude
errors using both star trackers. Figure 17 also shows the 3o
bounds for the two star tracker case. This shows the
significant improvement in attitude knowledge by using two
trackers.

In order to further improve the attitude accuracy, an
Enhanced QUEST algorithm (EQA) was developed. Thisis a
simple first-order Kalman filter which combines a propagated
model with the QUEST determined attitudes. Since gyros are
not used for this case, the angular velocity is assumed to be
perfect (i.e., given by Equation (6)). This assumption is not
true, since external disturbances, and control and sensor
errors are present in the actual system. Typical control errors
using the ESA are shown in Figure 17. This shows the large
errors and dynamic coupling in the roll/lyaw axis. The EQA
is given by

4,,0-efjowalge @

g’:k(+)=(1—a)g‘_k(—)+a_c7_k 41b)

where Ar=01 seconds, g, is the QUEST determined
attitude at time f;, and O is a scalar gain. This gain was
determined by minimizing the attitude errors from the

simulated runs. A value which is too small adds too much
model corrections, and tends to neglect measurements. A
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value which is too large adds too much measurement noise,
and tends to neglect model corrections. A value of o =0.05
was determined to be optimal. The EQA covariance is
derived by re-writing Equation (41) as

A -~ ~ -1 -~
Q1 =044, ®[l +°‘({¢4 .q.k}' O, _-I—H (42a)

42b)

D, = exp{—;-ﬂ.(@) At}

where ® denotes quaternion multiplication (see [1]). The
QUEST determined quaternion is written as

87
~  _|99,
e [ 1+1]®2k+1 “3)

where ¢, . is the true quaternion, and 8q ap i @ three

component error vector. Substituting Equation (43) into
Equation (42a), and post-multiplying both sides of the
resulting equation by 2;11 yields

N 1 _|%¢ PO 87
§k+1®qk-1;-1=[ —ic+1]=q>4gk ®z_1k11(1—a)+a[ --1k+1](44)

Using a first-order approximation yields the following
covariance covariance for the EQA

P

T 2
3k 4)3 +0< Py

2
=(1"(1) (D3 37y

P«jq“ . 45)

where @, is the state transition matrix of [@ x]. Since this

matrix is constant and nearly the identity matrix, the diagonal
elements of Equation (45) approach the following steady-state

o
Pagy =% g Paix @6)

Figure 18 shows the attitude errors and bounds from Equation
(46) using one star tracker and the EQA. Comparing Figure
18 with Figure 15 shows a significant improvement using the
EQA. Figure 19 shows the attitude errors using two trackers
and the EQA. Comparing Figure 19 with Figure 16 again
shows a significant improvement using the EQA.

In this section, the results using gyros and a Kalman filter are
presented. Two gyro cases are simulated. The first case
involves the utilization of the DRIRU-II. The second case
involves the utilization of the of the HRG. The parameters
for both gyros are summarized in Table 4,



Table 4 Gyro Parameters

Parameters DRIRU-II HRG
O, (whitenoise)  215x10™ pradfsec’?  155x107* prrad/sec’’?
G (random walk) (206 prad/sec’/? 16 prad/sec?
The gyro model is shown by Equations (1) and (2). The 1
relative performance of the attitude estitnation can be found §,=0,M2%/c (48d)

by numerically iterating the Kalman filter equations to steady
state, but Farrenkopf [3] obtained analytic solutions for the
case when the three attitude error angles are assumed
decoupled. Farrenkopf’s tesults for the preupdate and
postupdate attitude error standard deviations, denoted by
o(-) and o(+), respectively, can be written as

1

In the limiting case of very frequent updates, the preupdate
and the postupdate attitude error standard deviations ‘both
approach the continuous-update limit, given by

I

11 1
O',,=At40'2[0',2,+20u0'vAt2} 49

o(-)=c(£?-1)2 @7a)
f Using the parameters in Table 4 in Equation (49), it was
°(+) =o( )/§ (47b) determined that the DRIRU-II steady-state error is
approximately 2.8 times better (i.e., more accurate) than the
where HRG. This is also shown in the simulations. Figures 20 and
21 show the attitude errors using the HRG for the one tracker
1 and two tracker cases, respectively. Figures 22 and 23 show
E= 1 Y +l S, +(7 S, + sz +_1. 53)2 (48a2) theattitude errors using the DRIRU-II for the one tracker and
217 2 3 two tracker cases, respectively. Comparing Figure 20 to
Figure 22, and Figure 21 to Figure 23, it is seen that the
PRIRU-II is approximately 2 to 3 more accurate for the
2 2 1 attitude knowledge than using the HRG. Results for the cases
Y= [4+ Sy +(1/12)S, ]2 (48b)  without gyros and cases with gyros are shown in Table 5 and
Table 6, respectively.
3
S,=0,4At2 /o (48¢c)
Table 5_Attitude Error Results Without Gyros
Roll Error Pitch Error Yaw Error
Cases Simulated
(urad) 36 | (urad) 30 | (prad) 30
QUEST (1 Tracker) 60 1250 900
QUEST (2 Trackers) 35 70 50
EQA (1 Tracker) 12 225 175
EQA (2 Trackers) 6 10 8
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Table 6 _Attitude Error Results With Gyros
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Attitude Errors With Dynamics Using Two Trackers (QUEST) Attitude Errors With Dynamics Using One Tracker (Enhanced QUEST, Alp=0.05)
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Attitude Errors With Dynamics Using One Tracker.and Gyros ( HRG)
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Conclusions

This study provided some insightful information for
using gyros on the GOES spacecraft. It was determined that
the gyros do not significantly reduce the non-repeatable errors
in the ESA. This was shown by comparing Figure 9 with
Figure 10. Since the relative error is approximately equal in
these two plots, we conclude that the utilization of on-board
gyros does not significantly improve performance. Also,
using gyros does not provide any observability in the yaw
angle estimate, when using the ESA.

The star tracker simulation results show a significant
improvement over the ESA attitude knowledge errors. The
greatest improvements were showing using either: (1) two
trackers with the EQA, or (2) one tracker and a DRIRU-IT
type gyro, and (3) two trackers and either an HRG type gyro
or a higher quality gyro such as the DRIRU-II. Adding gyros
to the spacecraft is the most ideal case since the filter
bandwidth is larger than the EQA filter bandwidth (i.e., the
Kalman filter with gyros can sense higher frequency
spacecraft motions than an BQA). The utilization of on-
board gyros may also improve the pointing accuracy, since
the controller bandwidth may be increased.
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Abstract

Although several algorithms now exist for determining three-axis magnetometer (TAM) biases without the use of
attitude data, there are few studies of the effectiveness of these methods, especially in comparison to attitude-
dependent methods. This paper presents results of a comparison of three attitude-independent methods and an
attitude-dependent method for computing TAM biases.

The comparisons are based on in-flight data from the Extreme Ultraviolet Explorer (EUVE), the Upper Atmosphere
Research Satellite (UARS,) and the Compton Gamma-Ray Observatory (GRO). The effectiveness of an algorithm
is measured by the accuracy of attitudes computed using biases determined with that aigorithm. The attitude
accuracies are determined by comparison with known, extremely accurate, star-tracker-based attitudes.

In addition, the effect of knowiedge of calibration parameters other than the biases on the effectiveness of all bias
determination methods is examined.

1. Introduction

The recent emphasis on cost reduction in space missions has led to renewed interest in the use of magnetometers as
attitude sensors. Because of their role in momentum management systems, three-axis magnetometers (TAMs) are
nearly ubiquitous on near Earth-orbiting, three-axis-stabilized spacecraft. The cost of using TAMs for attitude
determination is minimal, not only because of their use in momentum control, but also because they are
inexpensive, reliable sensors. For these reasons, methods have been proposed to not only compute spacecraft
attitudes, but also rates and even ephemerides (References 1-3).

Magnetometers contribute to attitude knowledge because the observed magnetic field best approximates a reference
magnetic field when they are expressed in the same coordinate system and the transformation between the local
spacecraft coordinate system and an Earth-reference system defines the spacecraft attitude. To best use TAMs for
attitude determination, calibration parameters that are used to adjust observed magnetic fields must be determined.
Chief among the calibration parameters that can be determined are magnetometer biases.

Magnetometer biases can be determined using a number of different algorithms (References 4-6). Although
magnetometer bias determination methods all must use the observed magnetic field and the reference magnetic
field (computed using the spacecraft ephemeris), some methods make use of additional information such as attitude
rates (which can be obtained from gyroscope measurements) or spacecraft attitudes (obtained using more accurate
sensors). Prior to bias determination, the magnetometer observations may be corrected for other calibration
parameters, including magnetometer misalignments, nonunity scale factors, and the time-dependent effects of
other instruments onboard the spacecraft that produce magnetic fields.

* This work was supported by the National Aeronautics and Space Administration (NASA)/Goddard Space Flight Center
(GSEC), Greenbelt, Maryland, under Contract NAS 5-31500.
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The purpose of this paper is to compare the utility of magnetometer biases computed using different attitude-
independent methods for computing magnetometer-based spacecraft attitudes. Their utility is determined by
comparing the accuracy of attitudes computed using identical magnetic field observations adjusted using the
various computed biases. The data for computing the biases and attitude accuracies are obtained from flight data
on three missions supported by the National Aeronautics and Space Administration (NASA) Goddard Space Flight
Center (GSFC). These comparisons are made using magnetometer data adjusted with various combinations of
other calibration parameters applied. Biases determined using an accurate attitude-dependent method are included
for comparison.

2. Background

The three methods that were compared include two that require no rate data and one that does. They consist of the
TWOSTEP, TAMCAL, and CFADS algorithms. In addition to these three attitude-independent methods, an
attitude-dependent method was used to compute biases for comparison. This attitude-dependent method is referred
to as the CFADS attitude-dependent algorithm,

TWOSTEP Algorithm—Attitude Independent (Reference 6)

The TWOSTEP method determines the bias by first computing a centered bias estimate based on a cost function
derived from centering the measurements (about weighted averages of the measurements), where the centered
measurements depend only linearly on the magnetometer bias. The centered bias estimate is then used as an initial
estimate to compute a corrected bias, where the correction is due to the center term. This method was developed to
correct the incorrect treatment of correlations in the Gambhir algorithm and to include information from data that
that algorithm discards. The TWOSTEP method is attitude independent. Although it has been extended to
compute calibration parameters other than the bias, only bias estimates are considered in this work.

TAMCAL Algorithm-—Attitude Independent (Reference 5, 7)

The TAMCAL algorithm minimizes a loss function, L, defined by
- 2 - -2
L=ZW,I[|BR(t)| ~|B,(t)-b| ]' 1)
t

where w, is a weight and B e (2) and Eo (¢) are the reference and observed magnetic field vectors at time  and b

is the bias vector. The bias is solved by an iterative refinement of an initial bias estimate. This method is truly
attitude independent, because the magnitudes of the reference and estimated observed (observed-minus-estimated
bias) magnetic field vectors are used, and these magnitudes are attitude independent. This algorithm is embodied
in the Multimission Three-Axis Stabilized Attitude Spacecraft (MTASS) Flight Dynamics Support System (FDSS)
magnetometer calibration utility used by the Flight Dynamics Division (FDD) at GSFC.

CFADS Algorithm—Attitude Independent (Reference 7)

The CEFADS algorithm for bias determination consists of a particular use of the MTASS FDSS Coarse/Fine
Attitude Determination System (CFADS). In this use of CFADS, a batch least-squares method is used to solve for
a state vector containing an epoch attitude, rate biases, and TAM biases. The solution uses only TAM observations
and attitude rate data (usually obtained from gyroscopes). Because neither attitude information nor data from more
accurate attitude sensors are used in it, this method is also considered attitude independent.

CFADS Attitude-Dependent Algorithm (Reference 7)

The CFADS attitude-dependent algorithm uses MTASS FDSS CFADS and solves for the same state vector as does
the CFADS attitude-independent algorithm. The difference arises from the additional use of pseudo-observations
at times throughout the batch and from the choice of observation weights, Pseudo-observations consist of
estimates of the spacecraft attitude previously obtained using more accurate sensors (in this case, star trackers).
The CFADS loss function includes differences between a representation of each attitude (from a pseudo-
observation), propagated to the epoch time using rate data, and the attitude portion of the state vector. The
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pseudo-observation weights are set to values, sufficiently high compared with the magnetic field observations, so
that the attitude solution is negligibly affected by the magnetic field observations. This procedure is equivalent to
including highly weighted, more accurate sensor observations directly as input to CFADS.

The three spacecraft included in this study were the Extreme Ultraviolet Explorer (EUVE) (Reference 8), the
Compton Gamma-Ray Observatory (GRO) (Reference 9), and the Upper Atmosphere Research Satellite (UARS)
(Reference 10). Each of the missions contain unique features that must be considered in order to understand the
results. The three spacecraft all use fixed-head star trackers (FHSTs) and accurate gyroscopes as primary sensors.
Their onboard computer (OBC) attitude accuracies have stringent requirements (1o attitude accuracy requirements:
EUVE = 6 arcseconds, UARS = 20 arcseconds, and GRO = 27 arcseconds); therefore, compared with the TAM-
based attitudes described later, the OBC attitudes can be considered truth.

The three spacecraft contain similar magnetometers, and all are in nearly circular orbits. While EUVE and GRO
have 28.5-degree (deg) orbital inclinations, the UARS orbit has an inclination of about 57 deg. During the periods
when data for this study were obtained, the spacecraft mean altitudes were about 513 kilometers (km) for EUVE,
582 km for UARS, and 379 km for GRO.

EUVE and GRO have magnetic torquer bars (MTBs) situated relatively near the TAMs, while the UARS MTBs
were designed to be at a sufficient distance from the TAMs to have only a small effect on the measured magnetic
field. As a result, MTB data were not available to FDD in the UARS telemetry. None the less, FDD personnel
have seen data that indicate the possibility of an uncalibrated MTB effect of 1 to 3 milligauss (mG) on UARS. For
EUVE and GRO, the time-dependent effects of the MTBs can be minimized through application of a coupling
matrix.

Magnetometer measurements on UARS and EUVE are received with a precision of about 7.8 mG, while on GRO
the least significant telemetry bit represents about 0.3 mG.

During the periods when the data for this study were obtained, EUVE and GRO were inertially pointing while
UARS rotated at 1 revolution per orbit (RPO) to maintain an Earth-pointing attitude. Continuous telemetry was
not available for GRO, and the data gaps of up to 10 minutes were filled with gyro data, created assuming constant
attitude rates between the attitudes at either end of each gap. While EUVE and UARS TAM data were received in
an unaltered state, the GRO TAM data used had been previously adjusted using prelaunch calibration parameters.

3. Method and Results

Prior to bias determination, the magnetometers on each spacecraft were calibrated using a complete, attitude-
dependent calibration method applied to a long span (8 to 14 orbits) of data. This method is different from the
attitude-dependent bias determination method. The calibrations performed on EUVE, UARS, and GRO have been
verified by computing TAM/gyro attitudes using all of the calibration parameters and achieving attitude accuracies
(compared with star-tracker-based attitudes) of about 0.06 deg for UARS and EUVE (Reference 11) and 0.02 deg
for GRO.

These calibrations determined parameters in the magnetometer adjustment equation:

B,(t)= A, {B,(+C,D,(0}-b, @
where
‘b = bias vector in the body frame
I_jt , = commanded torquer dipole at time ¢
C, = torquer coupling matrix that converts from the torquer dipole in the torquer frame

to the magnetic field in the magnetometer frame
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B, measured magnetic field in the sensor frame

Ahs

alignment/scale factor matrix that both converts magnetic field estimates in the sensor frame
to the body frame and corrects them for scale factor deviations in the magnetometer

The bias vector compensates for any time-independent magnetic fields in the spacecraft, the torquer dipole vector
and coupling matrix compensate for the major source in the time-varying spacecraft magnetic field, and the
alignment/scale factor matrix puts the results into the body frame while compensating for linear errors in the
magnetometer response. This matrix, which will be henceforth referred to as the A-matrix, is not constrained to be
either orthogonal or normal and can be viewed as being composed of columns representing the alignment of the
three independent one-axis magnetometers, each multiplied by its separate scale factor.

For each spacecraft, a 193-minute (approximately 2 orbits) span of data was selected for bias determination. This
span was selected so that magnetometer, magnetic torquer (except for UARS), gyroscope, and OBC reference
attitudes were available. The data were independent of those used for the full calibration of the magnetometers.
To simulate conditions in which some of the calibration parameters might be unknown or inaccurate, the
magnetometer data for EUVE and GRO were adjusted in four ways to produce four separate sets of corrected
magnetometer data. UARS data, because magnetic torquer data were not available, were adjusted in only the two
ways that do not require torquer data.

The four types of adjustments made were the following:
1. No adjustment
2. Coupling only: B L) = ES ®+C, ﬁ, ®
3. A-matrixonly: B L, (D =A,, E.« (®)

4. Both: B, (1= A,[B,(+C,B, 0]

Note that no bias adjustments were performed.

For each of the sets of adjusted data, separate bases were determined using each of the three attitude-independent
bias determination methods and, for comparison, using the CFADS attitude-dependent method. The computed
biases are shown in Table 1.

Separate sets of data spanning 193 minutes for each spacecraft were selected and adjusted in the four ways detailed
above. In addition, the corresponding biases were subtracted from the data (biases determined using the no-
adjustment case of the first set of data, subtracted from the no-adjustment case of the second set of data, etc.). Each
of these sets of adjusted data with bias correction were used with gyroscope data to determine spacecraft attitudes at
S-second intervals over the 193 minutes. The attitude solutions were computed using a batch least-squares method
with gyroscope biases and attitude as the only elements of the state vector. Similar attitude solutions were obtained
with each set of adjusted data from which no magnetometer biases had been subtracted. In all attitude
computations, the reference fields were obtained using the International Geomagnetic Reference Field (IGRF)
model, evaluated to 10th order, and using the 1990 definitive coefficients including the secular terms.

A total of 20 sets of attitudes each were computed for EUVE and GRO and an additional 10 for UARS. The
attitude rotations between the computed attitude and the reference (OBC—star-tracker-based) attitude were
expressed as an Euler sequence at S-second intervals, and the root-mean-square (RMS) of these error rotations was
determined. Table 2 contains these RMS errors over all axes* throughout the period. These values represent the
accuracy of the attitudes obtained with the different biases and are labeled as attitude errors.

* Except for UARS where a timing error introduced a systematic offset in the pitch component. In the case of
UARS, the mean of the other two axes is given.
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Table 1. Comparison of Magnetometer Bias Computed Using Different Methods

Bias Determination Method
Spacecraft Adjustment | Axis | wosTEP | TAMCAL | crADS Dﬁ;‘:ﬁ‘::m
X 5.53 7.06 3.41 6.00
None Y 1.43 257 0.32 -3.26
Z -10.74 -11.65 -10.59 -10.08
X -3.27 -1.70 —-2.94 -1.94
Coupling Matrix Y 3.76 2.60 3.02 0.64
EUVE Z -2.19 -3.15 -1.74 ~0.54
X 9.81 15.38 7.78 - 8.57
A-Matrix Y -5.41 -13.51 -5.69 -5.83
b -6.80 -4.04 -7.21 -8.04
X 0.89 6.33 1.19 0.40
Both Y -2.99 -11.00 -2.76 -1.70
' z 1.81 4.67 1.62 1.51
X 0.41 2.31 0.47 1.39
None Y -0.96 -1.94 -1.13 -1.99
pa -6.10 -6.65 ~2.86 -2.82
X 0.46 2.35 0.35 1.24
Coupling Matrix Y -1.11 -2.09 -1.38 -2.13
GRO z -6.12 -6.67 -2.82 -2.74
X —2.42 -3.36 ~2.43 -2.39
A-Matrix Y —2.50 -4.96 -2.54 -2.38
z —2.24 1.20 ~2.07 -2.06
X -2.37 -3.32 ~2.55 -2.51
Both Y —2.63 -5.10 275 ~2.51
pa -2.26 1.18 ~2.00 -1.99
X -4.82 -4.77 -3.54 -3.07
None Y -7.58 ~7.36 ~7.14 -8.34
UARS Z -4.96 ~4.91 —4.71 —4.49
X —2.81 -0.70 ~1.58 —2.25
A-Matrix Y -6.58 -5.21 -6.37 -6.27
z -2.60 -0.07 —2.05 -2.16
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For each spacecraft and each bias source, the mean values of the attitude errors were computed and are presented
as rows labeled “mean” under each spacecraft in Table 2. Similarly, for each bias source, the mean of the attitude
errors for all spacecraft and each adjustment method, as well as the overall mean for all spacecraft and all
adjustments, are presented as rows labeled by the adjustment method under the category “mean” in this table.
These data are also presented for the three spacecraft as Figures 1, 2 and 3. Note that in these figures, the order of
the series has been changed to improve visibility.

To more clearly show the relative accuracies, the attitude accuracy results were converted to ratios. Table 3
presents the ratios of the attitude accuracies given in Table 2. For each row of attitude errors in Table 2, the value
in each column (representing a bias determination method) was divided by the attitude error from biases obtained
using the attitude-dependent method (representing the “best” biases with this adjustment). The resulting ratios
show how close to the “best” adjustment a given set of biases comes. An additional column shows the attitude
errors for each adjustment divided by the attitude errors ob<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>